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Abstract

We explore the application of SSD-MobileNet to an em-
bedded system in the context of small mobile autonomous
vehicles. We demonstrate real-time object detection on-
device in a mobile robotic platform, and the ability to in-
fer object locations and categories at approximately seven
frames per second. We incorporate object detection into
a motion control loop on a small autonomous vehicle, for
recognizing and tracking specific objects. We improve sta-
bility and robustness by applying filtering techniques, con-
trol loop tuning, and a custom training dataset for ob-
ject recognition to optimize for pose, scale, and illumina-
tion invariance. The vehicle is capable of tracking objects
in the presence of significant visual clutter and a variety
of lighting conditions. We further apply the object detec-
tion model in the context of gesture recognition, allowing a
user to command the vehicle’s velocity by simple hand mo-
tions. We demonstrate the generality of object detection al-
gorithms in embedded computing by applying an on-device
model for license plate detection and recognition. Demo
videos are available at https://photos.app.goo.
gl/TG3DIh07jPN0ZY3F2 and in the included supple-
mental material [1].

1. Introduction
Small mobile robotic platforms are constrained by their

need to minimize size, weight, and power consumption.
This presents challenges to autonomous computer vision
tasks such as object recognition and tracking. Deep learn-
ing has enabled many recent advances in computer vision,
but these algorithms require significant computational re-
sources. Deep neural network (DNN) models often consist
of tens of millions of parameters, loaded as weights into a
computational graph. To efficiently make predictions, these
graphs must reside entirely in RAM and inputs must be pro-
cessed via highly parallelized load-store and arithmetic op-
erations. GPUs are ideal devices for such computational
needs, but most GPUs used in deep learning are desktop
or server-class, with corresponding size and power require-

ments. Small mobile robots are ill-equipped to incorpo-
rate these devices on-board. Distributed computing is one
approach to incorporating DNN models as part of a real-
time control objective on a mobile robot, for instance by
streaming a robot’s camera feed over a network to a ded-
icated GPU. However, this requires a robust low-latency
network, often limiting applications to indoor research lab-
oratories with additional mitigations to reduce wireless in-
terference, since a brief interruption in a camera feed may
cause controller instability. Recent research efforts such as
Google’s 2017 MobileNets [8] seek to reduce the compu-
tational requirements of deep learning algorithms in order
to target mobile GPUs, which are present in many smart-
phones and other portable electronic devices such as video
game systems, offering only a fraction of the RAM and
compute cores present on desktop/server GPUs. These em-
bedded GPUs can be integrated into mobile robotic plat-
forms. Our work aims to apply these recent advances in
resource-efficient deep learning to a small mobile robot for
real-time object recognition and tracking.

We incorporated object detection into an autonomous
control loop on a small robotic car, which we trained to
recognize and follow a specific person at a given distance
as they walk around. The car platform we used in our ex-
periments provides a 720p camera, an embedded GPU, and
a simple motor API which accepts velocity and steering
angle commands (Sec. 3.1). Due to the car’s small size,
the camera is low to the ground. Therefore, we trained a
TensorFlow-based object recognition model to detect and
discriminate between the shoes worn by the two authors
(Sec. 3.2). This shoe detection model outputs bounding
boxes, which are used as inputs to the robot’s velocity and
speed controllers. (Sec. 3.3).

To enable real-time object detection on our embedded
GPU, we trained SSD-MobileNet using the TensorFlow Ob-
ject Detection API (Sec. 1.1). This highly optimized net-
work requires only 22MB of weights and can infer objects
while using under 2GB of GPU memory allocations. This
enabled us to achieve real-time inference for integration
into our motor controllers. Our recognition and tracking
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controller is able to continuously follow a specific person
in a variety of lighting and environmental conditions. We
demonstrate it tracking a person as they walk through vari-
ous real-world environments, in the presence of significant
clutter visible on the ground (such as table legs, boxes, and
research laboratory equipment).

We also demonstrate the incorporation of this object de-
tection network into a gesture recognition controller. In
our implementation, the car accepts commands to drive for-
wards or backwards in response to hand motion when both
hands are present in frame (Sec. 3.4). Finally, we demon-
strate that modern embedded CPUs are also appropriate tar-
gets for many object recognition applications which are not
based on DNNs . We demonstrate this by applying an exist-
ing model for license plate detection and character recogni-
tion on the platform’s embedded CPU (Sec. 4.4).

1.1. Object Detection on Embedded GPUs

We performed object detection using TensorFlow’s Ob-
ject Detection API [14] and a variant of the Single-Shot
Multibox Detector (SSD) network [11]. SSD is an ob-
ject detection network which appends convolutional feature
maps after the initial layers of an image classification net-
work. These appended convolutional layers have outputs of
different sizes; activations correspond to detections of ob-
jects at different scales. For each feature map scale, SSD
predicts an object’s presence among several default boxes
tiled spatially across the image. Each default box contains
a prediction for each class at multiple aspect ratios. These
play a similar role to the anchor boxes in the Faster-RCNN
object detection model [11]. Non-maximum suppression is
used to limit the number of bounding boxes predicted at a
given spatial location to a single box with the highest confi-
dence.

The original SSD implementation used the initial layers
of the VGG image classification network [11]. The large
network size limits SSD’s ability to perform real-time de-
tection to desktop and server-class GPUs such as the Nvidia
TITAN X. In 2017, Google released the MobileNet archi-
tecture [8], which is intended for mobile GPU applications.
MobileNet decomposes a standard convolution operation
into two convolutions: a channel-based depthwise separable
filter and a single-point 1x1 filter that combines channels.

Figure 1: MIT RACECAR programmable vehicle.

The separable filter simplifies a 2D MxN convolution by
approximating it as two 1D (Mx1 and Nx1) convolutions,
reducing the number of multiplications and additions nec-
essary. This comes at the expense of fewer tunable kernel
parameters. Unlike a traditional convolutional kernel, sepa-
rable kernels are applied independently to each of the three
color channels. MobileNet exploits matrix sparsity and can
be further optimized using optional width and resolution hy-
perparameters, which reduce the number of channels or the
dimensions of the input image.

Our implementation uses SSD-MobileNet from Tensor-
Flow’s Object Detection API [14]. As described in the
MobileNet implementation [8, 9] (Sec. 2), after replac-
ing the VGG layers in SSD with MobileNet’s depthwise-
convolutional layers, SSD-MobileNet achieved an mAP
of 19.3%. This is close to SSD-VGG’s mAP of 21.1%
(based on the COCO primary challenge metric of AP at IoU
of [0.50:0.05:0.95] [3]), but SSD-MobileNet only requires
3.4% of the computational resources of SSD-VGG and 20%
of the parameters (6.8M compared to 33.1M). As a result,
SSD-MobileNet was capable of performing realtime infer-
ence on the Nvidia Tegra X1 embedded GPU used in our
implementation (Sec. 3).

1.2. Division of Work

Both teammates contributed equally to the project. In
particular, equal effort was applied in high level project
implementation phases, image collection and labeling,
robotics debugging, object detection deployment, high level
integration, and generation of presentation slides and this
paper. I (Nathan) was the leader on robotics control tuning,
license plate recognition and memory portions. Collabora-
tor (Mark) was the leader on object detection network train-
ing and the gesture recognition portions.

2. Related Work
The domain of visual servoing involves the use of cam-

era inputs to control motor outputs, often to track an object
in frame. A common approach for visual servoing is color
thresholding [10]. In this approach, images are segmented
based on colors, often following transformation into color
spaces such as HSV. This approach is computationally ef-
ficient for embedded devices. However, HSV thresholding
approaches are often unable to generalize to arbitrary real-
world settings, where varying illumination and the potential
presence of similar-colored objects adversely impact the de-
tection rate.

Deep learning approaches to object detection have
yielded high accuracy in generalizable settings, but only
a subset of recent networks such as R-FCN, SSD, and
YOLO architectures have demonstrated sub-second frame-
rates [9]. These networks still target desktop or server-class
GPUs to achieve high frame rates for video processing. The
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YOLOv2 network has been adapted to run on the Nvidia
Tegra X1 embedded GPU by [12], after reducing the num-
ber of parameters used in the original YOLOv2 architec-
ture. However, in order to achieve a real-time framerate
on the embedded GPU, motion estimation was applied as a
filter and only a subset of remaining frames were used for
YOLO inference. In contrast, our system applies inference
at a steady rate of seven FPS.

The comparison study of several object detection archi-
tectures in [9] proposes a unifying implementation of Faster
R-CNN, R-FCN, and SSD as three meta-architectures for
object detection, with several feature extraction networks
available for incorporation within each object detector
meta-architecture, such as VGG-16, MobileNet, Inception
variants (e.g., V2), and ResNet variants. The combination
of a low number of parameters and high accuracy exhib-
ited by SSD-MobileNet is well-suited for embedded and
mobile GPU applications. The TensorFlow Object Detec-
tion API [14] implements the meta-architectures proposed
in [9], and we have relied on TensorFlow’s implementation
for our work.

3. Approach
This section details the vehicle and embedded hardware

platform underlying our implementation. We describe our
training methodology for our three object classes (two types
of shoes, plus hands) using SSD-MobileNet, and the con-
trol algorithm we use to command the car to autonomously
track specific people. Finally, we present the mechanism we
developed for simple gesture-based control.

3.1. Hardware Platform

The hardware platform used in our implementation is the
MIT RACECAR [2], a small programmable vehicle with a
wheelbase of 55cm x 29cm (Fig. 1). The vehicle was de-
veloped for classroom instruction in Robotics: Science and
Systems (6.141/16.405).1 Our onboard computation was fa-
cilitated by the Nvidia Jetson TX1 [2] present on the vehi-
cle. This is a battery-powered embedded computer which
offers an ARM Cortex-A57 CPU and a mobile GPU, identi-
cal to the one used in the popular Nintendo Switch portable
video game system. The TX1 has 4GB of RAM which is
shared by both GPU and the CPU, and runs Ubuntu 16.04
and ROS Kinetic [2]. The motors are controlled with the
VESC electronic speed controller API, which accepts ve-
locity and steering angle commands over USB and exposes
them through a ROS python interface. The car offers two
cameras, but our implementation only used the left camera.
This camera captures RGB images at 30 frames per second
at a resolution of 1280x720. This camera was also used to
collect training images for subsequent manual labeling.

1Neither author has taken this class, and we are grateful for the oppor-
tunity to borrow the platform.

3.2. Object Detection Training

To achieve real-time object detection on an embedded
platform in the context of autonomous control, we se-
lected SSD-MobileNet due to its high accuracy and mini-
mal model size (Sec. 1.1). Our system design for recogniz-
ing and autonomously following specific objects consists of
two main components. SSD-MobileNet detects bounding
boxes for a specific object in the camera frame. This feeds
into a robotic control loop which implements our tracking
algorithm (Sec. 3.3).

We fine-tuned SSD-MobileNet using pretrained weights
on the COCO dataset [3], which were downloaded from
Google [14]. The COCO model does not contain a generic
shoe category. We therefore created our own two-class
training corpus of 1070 images of the authors’ shoes taken
as each author walked in view of the car’s camera. These
images were manually labeled using the VIA tool [5]. 161
images were used for validation. Over 90% of the images
contain two bounding boxes representing a pair of shoes,
unless one foot occluded the other in the middle of a step.
To encode pose and scale invariance in our training set for
each shoe object category, we walked in multiple random
directions and at multiple distances (between 0 and 7m) in
front of the camera.

We provide the key parameters used for fine-tuning as
follows (all parameters are reported in [1]). Images were
rescaled from 1280x720 to an input size of 300x300. Six
layers were used for SSD’s convolutional feature maps
(Sec. 1.1), evenly scaled between 0.2 and 0.95 and mapped
to SSD’s default boxes, and five aspect ratios between
{0.333, 0.5, 1.0, 2.0, 3.0} were predicted for each default
box. Non-max suppression was configured to use an IoU
threshold of 0.6. MobileNet was configured to use the de-
fault maximum depth multiplier of 1.0. The learning rate
was fixed at 0.004, and data augmentation consisted of ran-
dom horizontal flips and crops. The model was config-
ured to return 100 bounding boxes per inference with cor-
responding confidence scores. Section 4.1 provides the
thresholds we used to filter these confidence scores.

The 4GB of RAM on our embedded platform is shared
between the CPU and GPU. The operating system, robot
control libraries, and camera allocate approximately 2GB of
RAM. Critically, our embedded kernel configuration does
not support swap space. By default, TensorFlow attempts
to allocate all available GPU RAM, which immediately ex-
hausts user memory and the process is resultantly killed
by the Linux Out-Of-Memory (OOM) Killer. Therefore,
we empirically limited TensorFlow’s memory allocator to
1.3GB. We found this sufficient for the SSD-MobileNet
computational graph to reside in RAM. We also had to re-
compile the embedded Linux kernel in order to enable con-
current support for Nvidia CUDA 8.0 (a TensorFlow library
dependency) and the ACM kernel module which enables the
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velocity and steering controller USB device.

3.3. Autonomous Tracking

Autonomous tracking is derived from object size and lo-
cation output from the object detector. This is realized as
two PID control loops, one each for steering and velocity
(Fig. 2). The steering control loop uses as an error function
the mean center location of detected objects of the desired
class. It attempts to center this mean location in the cam-
era’s field of view. Similarly, the velocity PID loop controls
the car’s drive motors. This controller attempts to main-
tain a constant distance from the desired object, using object
height as a proxy for distance. The controller’s error func-
tion in this case is the difference between mean height of
detected objects and desired height. The resulting behavior
of the two controllers is a vehicle which follows a speci-
fied object at a fixed distance. Both controllers incorporate
temporal and spatial median filtering on object detections to
mitigate detection noise and spurious detections which are
inherent in an inference-based control loop.

(a) Velocity Controller (b) Steering Controller

Figure 2: PID control loops for both drive velocity and
steering, allowing the vehicle to follow a specified object
at approximately a specified distance.

3.4. Integration into Gesture Recognition

We incorporated SSD-MobileNet into a second applica-
tion running on-board the car: gesture recognition for com-
manding velocity. The gesture we selected was the relative
position between two hands. The vehicle is commanded to
drive forwards if the user raises their left hand up in relation
to their right hand, with both hands present in the camera
frame. Conversely, the car drives backward if the right hand
is raised above the left. We trained a one-class model on
273 images of the authors’ hands with open palms, captured
with the car’s camera and labeled using VIA [5]. Forty nine
images were used for validation, with 90% of the images
containing two hands. The model uses the same configu-
ration parameters as the shoes model in Sec. 3.2, with the
exception of only predicting a single class.

To command velocities when two hands are detected, the
pose of the hands is estimated using the relative angle be-
tween them. First, the midpoint of each bounding box (cor-
responding to each detection) is calculated, and a line seg-
ment is calculated between these two midpoints. The angle
between the hands is estimated using the arccosine of the

dot product between a unit vector parallel to the x-axis of
the camera and a vector from the midpoint of the line seg-
ment to the midpoint of the rightmost bounding box (with
respect to the camera frame). Fig. 6 in Sec. 4.3 provides
a visual interpretation of this pose estimation approach. If
more than two bounding boxes are detected for a given con-
fidence threshold, our implementation performs spatial fil-
tering by selecting the two bounding boxes which are phys-
ically the lowest in the frame.

4. Experiments
4.1. Object Detection Results

Our two-class SSD-MobileNet object detection model
was fine-tuned for 14268 steps after initializing the model
with weights trained on the COCO dataset [14], as de-
scribed in Sec. 3.2. To evaluate our model’s performance in
detecting bounding box locations, we rely on the industry
standard mean Average Precision (mAP) metric [6] at 0.5
Intersection-over-Union (IoU). IoU refers to the number of
pixels in the intersection between a predicted bounding box
and a ground-truth bounding box from our manually labeled
dataset. With false positives defined as predicted bounding
boxes that do not correspond to a manually labeled bound-
ing box, and false negatives defined as a ground-truth box
which does not overlap with any predictions, a precision-
recall curve results. Average Precision approximates the
area under the precision-recall curve, and the mean is re-
ported across all classes and validation examples for an IoU
of 0.5 in Fig. 3. Figs. 3a and 3b report the mAP across
all validation examples for each author’s own shoe class.
Thresholds for successful detection were determined em-
pirically to be 0.15 and 0.2 for the two shoe classes cho-
sen. Low thresholds were selected to maximize detection
distance, and increase robustness in the presence of varied
lighting conditions. In addition, the detector only returns
the two most confident detections, so the risk of spurious
detection is low. The object detector was found to reliably
detect shoes with a height of approximately 25 pixels, or
approximately 5 meters from the car.

4.2. Autonomous Control Results

Control loops for autonomous tracking were tuned ac-
cording to standard control design practices for maximum
convergence time while minimizing overshoot and oscilla-
tion in the context of loop stability. Proportional, Integral
and Derivative gain values for the two controllers are as
follows: for steering, P = 0.0005, I = 0, D = 0.0001,
and for velocity, P = 25, I = 0, D = 0. In addition,
a median filtering block was included in the object detec-
tor’s output for robustness and stability. The length of the
median filter represents a tradeoff between noise immunity
and response time. The optimal filter length was empir-
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(a) Mark Shoes mAP (b) Nathan Shoes mAP

Figure 3: mAP@0.5IoU for both shoes after 14K steps.

ically set at 3. At an inference rate of approximately 7
FPS (143ms per frame), this represents a filtering delay of
approximately 428ms. Representative step response plots
of the two controllers to inputs in distance and angle are
given in Fig 4. Parameters were tuned for acceptable con-
vergence times and minimal overshoot. Drive velocity was
limited to a maximum magnitude of 0.5m/s. Convergence
time can be increased at the expense of this safety margin,
and we note this limit imposes nonlinear velocity control. A
nonlinear relationship additionally exists between bounding
box height and distance from the car, due to the trigonom-
etry of the object’s apparent height at different distances.
An optimal height for shoes was found to be 100 pixels,
or an approximate distance of 30cm based on known shoe
heights. Overshoot in distance is equal to approximately
45px, or approximately 8cm. Due to the car’s inability to
turn while stationary, the steering controller occasionally
exhibits a slight convergence offset if the desired height is
found before the object is fully centered (Fig. 4b), a target
for future optimization.

(a) Velocity Step Response (b) Steering Step Response

Figure 4: Step responses of two example runs with an ob-
jective (y-axis) in pixels, for velocity and steering PIDs.

4.3. Gesture Recognition Results

Hand detection for gesture recognition-based control ex-
hibited high accuracy and robustness due to it’s having a
single class output, as well as the relatively unique shape

Figure 5: Two walking sequences with autonomous track-
ing. Left: detections, right: 3rd-person view of the car.

of a human hand. The detector is robust to varied lighting
conditions and hand poses. Across 49 validation images
(most containing two hands), a mAP@IoU=0.5 of 0.9085
was achieved after fine-tuning on pretrained COCO weights
for 10262 additional steps. During inference, the confi-
dence threshold for hand detection was empirically set at
0.7. The device was able to achieve the same inference rate
as the shoe detector (seven frames per second), with fram-
erate being dominated by SSD-MobileNet’s inference time.
A delay of approximately 428 milliseconds exists between
gesture input and appropriate motion output due to the me-
dian filter implementation, as described in Sec. 3.4. While
this implementation only allows for gestural control of lin-
ear velocity, it could easily be extended to more advanced
control such as steering. In this implementation, consistent
detections can be made with a minimum bounding box size
of 34 pixels, corresponding to a maximum distance of ap-
proximately four meters.

4.4. License Plate Recognition

In order to demonstrate the generality of object detection
algorithms in embedded computing, we demonstrate an en-
tirely different detection algorithm in a different context:
license plate recognition. We applied license plate recog-
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Figure 6: Gesture recognition for velocity control.

nition techniques on the MIT RACECAR using the ope-
nALPR library [4]. The openALPR library uses a pipelined
approach for detecting and localizing license plate edges,
finding strings of character blobs, homography transfor-
mations for perspective warping, optical character recog-
nition on an individual character basis, and regular expres-
sion matching to known license plate patterns. OpenALPR
leverages the Tesseract OCR library [13] for character fea-
ture extraction. In contrast to Mobilenet’s convolutional
neural network architecture, OpenALPR uses Cascade Sup-
port Vector Machines [7] for object recognition. Applying
this approach, we were able to achieve real-time on-device
license plate localization and detection with multiple simul-
taneous license plates. Fig. 7 provides an example inferred
result. Potential applications include security monitoring
and autonomous driving.

Figure 7: License plate inference examples

5. Conclusion
We have demonstrated the application of real-time ob-

ject detection on an embedded device in a robotics plat-
form, and the ability to infer object locations and categories
at approximately seven frames per second. We incorporate
object detection in a feedback control loop for velocity and
steering angle to command an autonomous vehicle to recog-
nize and track specific objects, in a processing and memory-
constrained embedded computing environment. We opti-
mize for stability and robustness in our custom training
dataset, filtering techniques, and control loop tuning. The
vehicle is capable of tracking objects in the presence of sig-
nificant visual clutter and varying illumination. We further
applied object detection to gesture recognition, interpret-

ing simple hand motions as velocity commands. Finally,
we demonstrated the applicability of non-DNN-based ob-
ject detection algorithms in embedded computing by using
a cascade SVM based model for license plate recognition.
These applications demonstrate the potential of object de-
tection networks such as SSD-MobileNet to general tasks in
mobile robotics. We propose future work to explore other
scaling for SSD-MobileNet beyond 300x300 to optimize for
specific camera parameters, desired detection distance, and
target framerate. Obstacle avoidance and path planning al-
gorithms could increase tracking performance. Finally, an
incorporation of other sensing mechanisms such as LIDAR,
depth sensing, and accelerometer measurements into infer-
ence and control processes would further extend applicabil-
ity in real-world settings.
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