MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

6.334 Power Electronics	Issued: April 1, 2013
Design Project	Due: May 13, 2013

In this project you are to design a buck converter with the following specifications:

Input voltage range:	20 V to 30 V
Input voltage transient limit ¹ :	44 V for up to 1 ms
Output Power Range (resistive load):	50 W to 150 W
Output Voltage (static requirement):	$12 \text{ V} \pm 3\%$
Output Voltage (transient limits) ² :	$12 \text{ V} \pm 20\%$
Allowed output voltage ripple (p-p, any load):	100 mV
Allowed input current ripple (p-p, ideal source):	100 mA
Minimum efficiency (across voltage, load):	85%
Ambient temperature range	-20°C to +50°C

As part of this project, you need to:

- 1. Design and specify numerical component values for the power stage, input filter, and output filter.
- 2. Specify the power devices and heatsink(s).
- 3. Specify/design the passive components (e.g. capacitors and inductors) for the power stage and input and output filters.
- Design a feedback controller that results in a stable closed-loop system across line (input voltage) and load variations and also meets the static and transient control requirements. (A mathematical description of the controller coupled with supporting simulations is sufficient.)

You should provide sufficient analysis and simulation to validate that the proposed design will meet the specifications. Datasheets for a set of components (such as power devices, inductor cores, etc.) are provided for your use. Reasonable departures from this component set are permitted but datasheets with sufficient design data must be provided for any such departures. (Note that pre-designed components, such as EMI filters, wound inductors, and converters are *not* permissible.) Provided below are some guidelines to help you with the design:

Power Devices and Heat Sinks

When specifying each power device you must ensure that the device junction temperature remains sufficiently (e.g., at least 25°C) below the allowable maximum junction temperature (typ. 150°C) under all operating conditions. A first step is to make approximate calculations of device losses, including conduction and switching losses. For switching losses of the power MOSFET you may assume linear rise and fall of the current waveforms, and use the nominal

¹ The converter must me able to survive this input voltage transient, but does not have to run during the transient.

² The voltage should not vary outside this range during steps between minimum and maximum load.

delay, rise, and fall times provided in the datasheet. You may neglect the switching losses associated with the diode. Note that the on-state resistance of a power MOSFET varies with junction temperature; this variation is specified in the data sheet.

Once device losses are calculated, you should select heat sink(s) with sufficiently low thermal resistance to limit the junction temperature of the devices to acceptable levels. (Junction-to-Case thermal resistances are provided in the device datasheets.) You should assume a maximum 40°C ambient temperature when sizing the heat sink(s).

Passive Components

Ripple current capability is an important consideration when specifying capacitors. (For example, the filter capacitor at the input of a buck converter must sustain substantial ripple.) Another important consideration for filtering capability is the equivalent series resistance (ESR) of the capacitor. (For example, the output ripple voltage may be larger than expected for the selected capacitance value due to the drop across the ESR.) At higher frequencies, the capacitor equivalent series inductance (ESL) also becomes important. When specifying a capacitor, you must validate that the ripple capability of the capacitor is not exceeded, and must account for ESR (and possibly ESL) when calculating ripple voltage on the capacitor.

A set of square-cut ferrite cores is provided for the design of the converter and input filter inductors. Various values of A_L (nH for one turn) are available in each core (recall that inductance is proportional to the number of turns squared.) For 3F3 core material you may assume a maximum allowable flux density of 3000 gauss (0.3 T). You should also assume a maximum allowable current density in the windings of 500 A/cm². (Of course, the specified windings must fit within the winding area of the core.) For simplicity, you may neglect inductor core and winding losses and inductor temperature rise.

For those who are ambitious, the inductor losses and temperature rises may be calculated and a design selected such that the inductor does not overheat. (A centerpost temperature rise of 50° C over the 40°C ambient is reasonable.) To do so, you should compute the (approximate) losses in the inductor (as the sum of winding and core losses) and multiply by the thermal resistance of the core to find the inductor centerpost temperature rise. Winding power loss may be (crudely) approximated as the dc winding resistance times the rms inductor current squared. (In more sophisticated calculations, skin effect may be considered in the windings.) Core power loss in a 3F3 material core can be computed by approximating the ac flux in the core as sinusoidal, and calculating the core loss as:

$$P_{core} = C_M \cdot f^{\alpha} \cdot (B_{ac,pk})^{\beta} \cdot V_{core}$$

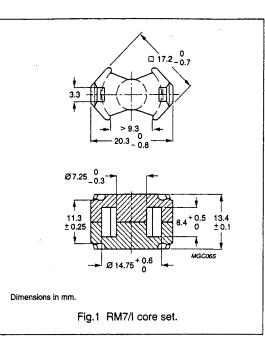
where P_{core} is the core loss in mW, C_M is the loss density coefficient, f is the switching frequency in Hz, $B_{ac,pk}$ is the peak ac flux swing in T, and V_{core} is the volume of the core in cm³. Empirical values for C_M , α , and β are shown for 3F3 material over various switching frequency ranges in Table 1. Note that these values are only approximate curve fits to measured loss for sinusoidal drive over limited ranges; computed values should thus be used conservatively.

Frequency range	C_M	α	β
100 – 300 kHz	2.5×10^{-4}	1.63	2.45
300 – 500 kHz	2×10^{-5}	1.8	2.5
500 – 1000 kHz	3.6x10 ⁻⁹	2.4	2.25

Table 1 Core loss curve fit data for 3F3 Ferrite material at 100°C core temperature. Data extracted from Ferroxcube Application Note "Design of Planar Power Transformers."

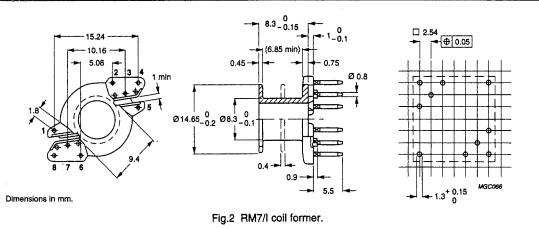
For the cores provided, the thermal resistance values are as follows: RM6 is 60°C/W, RM8 is 38°C/W, RM10 is 30°C/W, RM12 is 23°C/W, and RM14 is 19°C/W.

Feedback Control Design


The controller can be designed using linearized, averaged models of the converter. The closed loop system should be stable and well damped for *all* allowed values of input voltage and output resistance, so you should design for the worst case. (Note that the buck converter is particularly simple in terms of control design.) Because the static voltage variation is small, an integral control component is useful for eliminating steady state error. Voltage-mode control (i.e. duty-ratio control) using a PI controller is one design option. You should specify the control law mathematically (e.g. as a transfer function from error voltage to duty ratio). Ambitious students may provide a circuit implementation of such a controller (with a duty ratio signal of specified scaling at the output). We will not consider the PWM modulator, gate drive, or several other circuit design issues in this paper design. You should provide clear validation (analysis and simulation) that the control design is acceptable. As part of this, you should demonstrate that the output voltage will remain within the allowed transient limits during step changes in load (between minimum and maximum values).

YOUR REPORT SHOULD INCLUDE A COVER PAGE THAT CLEARLY AND CONCISELY STATES THE SELECTION / DESIGN OF EACH ELEMENT OF YOUR SYSTEM (E.G., INCLUDING THE DESIGN OF THE INDUCTORS, SELECTED DEVICES AND HEAT SINKS, ETC.) AND STATES THE KEY OPERATING PARAMETERS (E.G., INCLUDING SWITCHING FREQUENCY, COMPENSATOR TRANSFER FUNCTION). THE SELECTED DESIGN VALUES MUST BE JUSTIFIED IN THE BODY OF THE REPORT. THE COVER PAGE SHOULD ALSO INCLUDE A TABLE THAT STATES HOW THE PREDICTED PERFORMANCE COMPARES TO THE CONVERTER SPECIFICATION REQUIREMENTS ON PAGE 1.

CORE SETS


Effective core parameters

SYMBOL	PARAMETER	VALUE	UNIT
Σ(I/A)	core factor (C1)	0.680	mm ⁻¹
Ve	effective volume	1325	mm ³
le	effective length	30.0	mm
A _e	effective area	44.1	mm ²
Amin	minimum area	39.6	mm ²
m	mass of set	=7.7	g

Core sets for general purpose transformers and power applications Clamping force 40 ± 20 N.

GRADE	AL (nH)	μ	AIR GAP (μm)	TYPE NUMBER
3F3 540	100 ±3%	≈56	≈800	RM7/I-3F3-A100
	160 ±3%	≈89	~400	RM7/I-3F3-A160
	250 ±3%	≈139	=200	RM7/I-3F3-A250
	2500 ±25%	≈1390	≈0	RM7/I-3F3

Winding data for RM7/I coil former

NUMBER OF SECTIONS	NUMBER OF PINS	PIN POSITIONS USED	AVERAGE LENGTH OF TURN (mm)	WINDING AREA (mm²)	WINDING WIDTH (mm)	TYPE NUMBER
1	4	1, 2, 5, 6	35	21	6.85	CSV-RM7-1S-4P
1	8	all	35	21	6.85	CSV-RM7-1S-8P
2	8	all	35	2 × 9.8	2 × 3.2	CSV-RM7-2S-8P

RM7/I

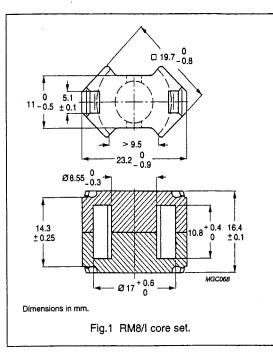
Ľ

1

Ì

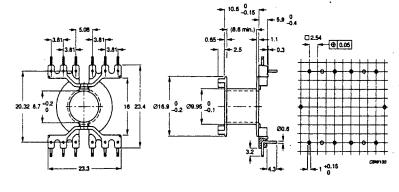
.i

÷.,


;•

RM cores and accessories

CORE SETS


Effective core parameters

SYMBOL	PARAMETER	VALUE	UNIT
Σ(I/A)	core factor (C1)	0.604	mm ⁻¹
Ve	effective volume	2440	mm ³
le	effective length	38.4	mm
A _e	effective area	63.0	mm ²
A _{min}	minimum area	55.4	mm²
m	mass of set	≈12.0	g

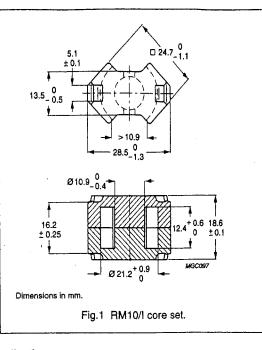
Core sets for general purpose transformers and power applications Clamping force 30 ± 10 N.

GRADE	A _L (nH)	μ	AIR GAP (μm)	TYPE NUMBER
3F3	100 ±3%	≈50	=1100	RM8/I-3F3-A100
-	160 ±3%	=77	≈550	RM8/I-3F3-A160
	250 ±3%	≈120	=300	RM8/1-3F3-A250
	315 ±3%	≈151	≈250	RM8/I-3F3-A315
	400 ±3%	=192	≈180	RM8/I-3F3-A400
	3000 ±25%	=1440	≈0	RM8/1-3F3

Dimensions in mm.

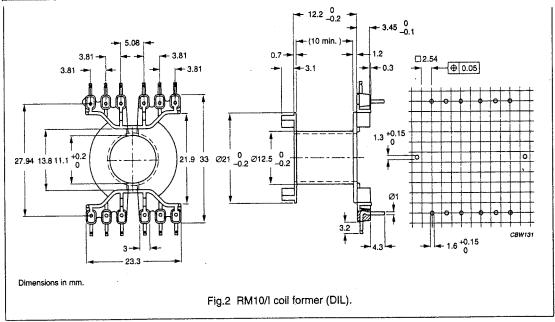
Fig.2 RM8/1 coil former (DIL).

Winding data for RM8/I coil former (DIL)


	NUMBER OF SECTIONS	AVERAGE LENGTH OF TURN (mm)	WINDING AREA (mm²)	WINDING WIDTH (mm)	TYPE NUMBER
F	1	42	30.9	8.6	CPV-RM8/I-1S-12PD

RM8/I

CORE SETS


Effective core parameters

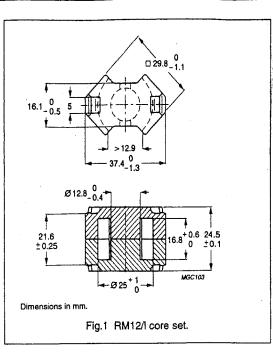
SYMBOL	PARAMETER	VALUE	UNIT
Σ(I/A)	core factor (C1)	0.462 mm ⁻¹	
Ve	effective volume	4310	mm ³
le le	effective length	44.6	mm
A _e	effective area	96.6	mm²
A _{min}	minimum area	80.9	mm²
m	mass of set	≈22	g

Core sets for general purpose transformers and power applications Clamping force 60 ±20 N.

GRADE	A _L (nH)	μ _e	AIR GAP (µm)	TYPE NUMBER
3F3	160 ±3%	≈59	≈900	RM10/I-3F3-A160
	250 ±3%	≈92	≈500	RM10/I-3F3-A250
	315 ±3%	≈116	≈400	RM10/I-3F3-A315
	400 ±3%	. ≈147	≈300	RM10/I-3F3-A400
	630 ±3%	≈232	≈150	RM10/I-3F3-A630
	4050 ±25%	≈1490	≈0	RM10/I-3F3

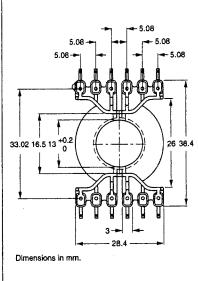
Winding data for RM10/I coil former (DIL)

NUMBER OF SECTIONS	AVERAGE LENGTH OF TURN (mm)	WINDING AREA (mm²)	WINDING WIDTH (mm)	TYPE NUMBER
1	52	44.2	10.0	CPV-RM10/I-1S-12PD


f

RM12/I

CORE SETS


Effective core parameters

SYMBOL	PARAMETER	VALUE	UNIT
Σ(Ι/Α)	core factor (C1)	0.388	mm ⁻¹
Ve	effective volume	8340	mm ³
le	effective length	56.6	mm
Ae	effective area	146	mm²
A _{min}	A _{min} minimum area		mm²
m	mass of set	≈45	g

Core sets for general purpose transformers and power applications Clamping force 70 \pm 20 N.

GRADE	ADE AL ^µ e		AIR GAP (µm)	TYPE NUMBER
3F3	160 ±3%	≈49	=1400	RM12/I-3F3-A160
	250 ±3%	≈77	≈800	RM12/I-3F3-A250
	315 ±5%	≈97	≈550	RM12/I-3F3-A315
F	400 ±5%	≈123	=450	RM12/I-3F3-A400
	630 ±5%	=196	≈300	RM12/I-3F3-A630
	5050 ±25%	=1 560	=0	RM12/I-3F3

٠ţ

۰ i

-]

ł

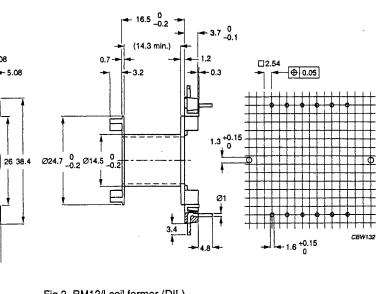
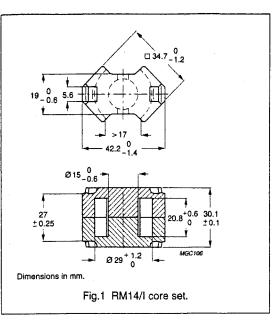


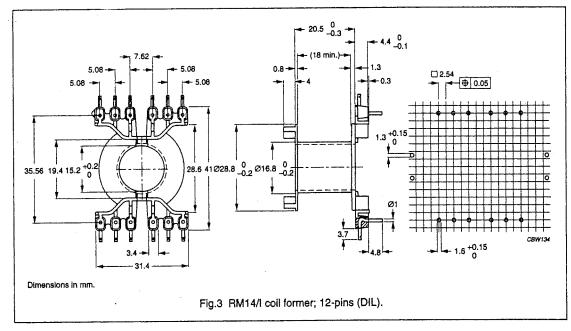
Fig.2 RM12/I coil former (DIL).

Winding data for RM12/I coil former (DIL)


NUMBER OF SECTIONS	AVERAGE LENGTH OF TURN (mm)	WINDING AREA (mm²)	WINDING WIDTH (mm)	TYPE NUMBER
1	61	75.0	14.3	CPV-RM12/I-1S-12PD

ا /سته ا

CORE SETS

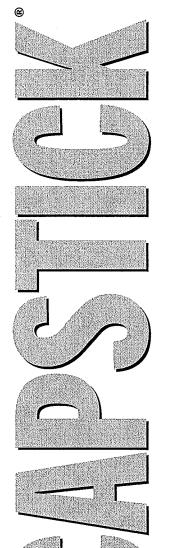

Effective core parameters

SYMBOL	PARAMETER	VALUE	UNIT
Σ(I/A)	core factor (C1)	0.353	mm ⁻¹
Ve	effective volume	13900	mm ³
le	effective length	70.0	mm
Ae	effective area	198	mm²
A _{min}	minimum area	168	mm ²
m	mass of set	=74	g

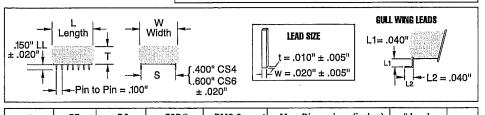
Core sets for general purpose transformers and power applications Clamping force 80 ±20 N.

GRADE	A _L (nH)	μ _e	AIR GAP (μm)	TYPE NUMBER
3F3	250 ±3%	≈70	=950	RM14/I-3F3-A250
	315 ±3%	≈88	≈700	RM14/I-3F3-A315
- H	400 ±3%	112	≈550	RM14/I-3F3-A400
	630 ±5%	≈177	≈250	RM14/I-3F3-A630
	1000 ±5%	≈281	=150	RM14/I-3F3-A1000
· -	5700 ±25%	=1600	=0	RM14/I-3F3

Winding data for 12-pins RM14/I coil former (DIL)


NUMBER OF SECTIONS	AVERAGE LENGTH OF TURN (mm)	WINDING AREA (mm²)	WINDING WIDTH (mm)	TYPE NUMBER
1	71	111.0	18.0	CPV-RM14/I-1S-12PD

Capacitor Types



- Surface mount capability
- Ideal for high frequency switching power supplies and DC to DC converters
- Low ESR/ESL
- High ripple current/ High capacitance
- Operating temperature range: –55°C to 125°C
- · Volumetrically efficient
- Made in U.S.A.

Voltage Ratings Note:

Like all film capacitors, Capstick capacitors have "true" voltage ratings and unlike other dielectric systems require no voltage deratings for maximizing reliability (MTBF) or use life. With FIT rates of well under 5 FIT when used at rated voltage, these units provide only a positive contribution to circuit MTBF calculations.

Circuit designers requiring 500 volt ratings in other dielectric systems for their 370 volt input applications are being penalized by that system's inherent deficiencies. In the film capacitor industry if a device is rated at a certain voltage, then the device is designed to be fully functional and reliable at that voltage for the life of the equipment. Many leading edge circuit designs take advantage of a film capacitor's inherent reliability at rated voltage to both reduce board size and improve performance.

Capacitance	PF	DC	ESRΩ	RMS Current	Max	Din	rension	IS (I	nches)	# Leads	
μF	Code	Voltage	@ 500 KHz	@ 500 KHz	W	X	Т	X	L	per side	Туре
.47	474	500	.011	6.2	.700	Х	.320	Х	.625	4	CS6
1,0	105	500	.008	9.5	.700	χ	,320	Х	1.135	8	CS6
.33	334	400	.012	6.0	.700	χ	.320	χ	.435	3	CS6
.47	474	400	.011	6.2	.700	Х	.320	Х	,460	3	CS6
1.0	105	400	,008	9.5	,700	Х	.320	Х	.880	7	CS6
2.0	205	100	,009	8.3	,500	Х	,250	Χ	.450	3 1	CS4
4.0	405	100	.007	11.5	.500	Х	.250	Х	.450	3	CS4
4.7	475	100	,006	12.2	.500	Х	.250	χ	.525	3	CS4
10.0	106	100	.003	15.3	.500	Х	.250	Х	,995	7	CS4
10.0	106	50	,003	.15.3	.500	Х	.320	χ	.620	5	CS4
20.0	206	50	.0025	17.8	.500	X	.320	Х	1.150	9	CS4

ELECTRICAL

CAPACITANCE RANGE 0.33 µF to 20.0 µF @ 1KHz **VOLTAGE RANGE** 50, 100, 400, 500 VDC TOLERANCE ± 10% (K) **DISSIPATION FACTOR** ≤1.0% @ 1KHz INSULATION RESISTANCE ≥1,000 Megohm x µF. Need not exceed 1,000 Megohms Test voltage @ one minute: Rated Voltage ≤100 VDC >100VDC Test Voltage 10 VDC 100VDC DIELECTRIC STRENGTH 1.3 x Rated Voltage: 50/100/500 V 1.6 x Bated Voltage: 400 V

TEMPERATURE COEFFICIENT +6% from -55°C to 85°C SELF INDUCTANCE <6nH (Typical) CS6 <4nH (Typical) CS4

PHYSICAL

CONSTRUCTION Non-inductively constructed with metallized polyester dielectric. MLP, Multilayer Polymer. LEAD MATERIAL Tinned Cu Alloy Lead Frame LEAD SPACING

.600" (15.0mm) nominal CS6,

.400" (10.0mm) nominal CS4

CASE

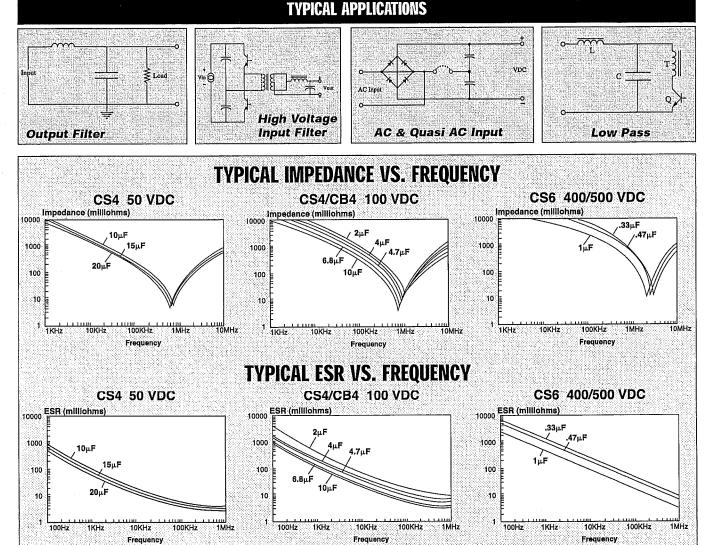
UL94V0 Rated Epoxy Coating COMPONENT MARKING

ITW, Type, Capacitance Code, Tolerance Code, and Voltage TEMPERATURE RANGE

-55°C to 85°C, with no voltage derating: 50/100 V* -55°C to 125°C, with no voltage derating: 400/500 V * For use at 125°C derate

voltage by 50%.

PACKAGING


Anti-static Tube

			% 100 VDC =	4.0 μF ±10%	EXAMPLE: 4
	CS4	100	К)5	40
LEAD ST	TYPE	VOLTAGE	TOLERANCE	ODE	PF C
Add "G"	CS4	050 = 50 VDC	K = ± 10%	405	334
part num	CS6	100 = 100 VDC		475	474
if Gull-wi		400 = 400 VDC		106	105
leads requ		500 = 500 VDC		206	205

ITW Paktron • P.O. Box 4539, 1205 McConville Road, Lynchburg, Virginia 24502 • Phone 804-239-6941 • FAX 804-239-4730 • www.paktron.com

CS/CB Performance Characteristics @ 85° C

	MAXIMUM RMS CURRENT (AMPS) VS. FREQUENCY									MUM RM /S. FREQU	S VOLTAG JENCY	E	
Value µF	Rated VDC	1 KHz	10 KHz	100 KHz	500 KHz	1MHz	Value µF	Rated VDC	1 KHz	10 KHz	100 KHz	500 KHz	1MHz
.47	500	0.8	1.9	3.9	6.2	7.1	.47	500	250	64	13.1	4.2	2.4
1.0	500	1.1	2.4	5.9	9.5	10.6	1.0	500	176	38	9.4	3.0	1.6
.33	400	0.7	1.3	3.5	6.0	6.9	.33	400	250	64	17.2	6.9	4.0
.47	400	0.8	1.9	3.9	6.2	7.0	.47	400	250	64	13.1	4.2	2.4
1.0	400	1.1	2.4	5.9	9.5	10.5	1.0	400	176	38	9.4	3.0	1.6
2.0	100	0.4	2.6	6.0	8.3	8.9	2.0	100	35	21	4.7	1.3	0.7
4.0	100	1.9	4.2	10.2	11.5	12.0	4.0	100	35	18	4.2	1.0	0.4
4.7	100	2.0	4.5	10.8	12.2	12.6	4.7	100	35	18	3.7	0.8	0.3
10.0	100	4.3	9.9	14.1	15.3	15.6	10.0	100	35	18	2.2	0.5	0.3
10.0	50	4.2	9.7	14.0	15.3	15.6	10.0	50	35	18	2.2	0.5	0.2
20.0	50	9.3	13.3	16.7	17.8	18.0	20.0	50	35	18	1.3	0.3	0.1

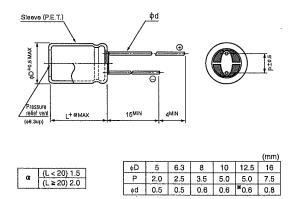
ITW Paktron • P.O. Box 4539, 1205 McConville Road, Lynchburg, Virginia 24502 • Phone 804-239-6941 • FAX 804-239-4730 • www.paktron.com

U767D Series

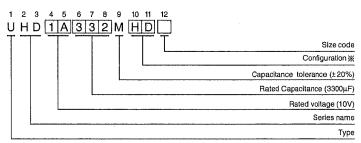
Standard Voltage Ratings - VH/Radial Lead ALUMINUM ELECTROLYTIC

Rated Voltage (WVDC)	Capacitance (µF)	Catalog Part Number	Nominal Case Size*	(mΩ 120Hz	ESR) at +25°C] 20k-100kHz	Maximum Impedance (mΩ) at	Ripple	imum Current
(***))			D × L (inches)	Max.	± 30%	+25°C,100kHz	(Arms) 120Hz	20kH
	3,900	117670161/120014257001	1 1 000 1 105	1- 51 0		,		
	8,200	U767D16VH392M25X29LL U767D16VH822M25X41LL	1.000 × 1.125	51.0	15.0	21	5.37	9.04
16 Volts	12,000		1.000 × 1.625	26.0	9.0	14	8.62	12.87
20 Volts Surge	15,000	U767D16VH123M25X54LL	1.000 × 2.125	18.0	70	11	1151	16.19
To Anite ani Ro	18,000	U767D16VH153M25X67LL	1.000 × 2.625	14.0	5.9	9	14.26	19.23
	22,000	U767D16VH183M25X79LL U767D16VH223M25X92LL	1.000 × 3.125	12.0	5.0	8	16.59	22.44
	22,000	0787018VH223M25X92LL	1.000 × 3.625	10.0	4.2	8	19.43	26.18
(1,200	U767D25VH122M19X29LL	0.750 × 1.125	.114.0	32.0	39	3.01	5.30
	1,500	U767D25VH152M19X41LL	0.750 × 1.625	85.0	22.0	29	4.00	
	2,200	U767D25VH222M19X41LL	0.750 × 1.625	58,0	19.0	26	4.86	6.91
	3,900	U767D25VH392M19X54LL	0.750 x 2.125	40.0	13.0	19	6.53	7.44
	4,700	U767D25VH472M19X67LL	0.750 × 2.625	31.0	11.0	16	6.25	10.01
	5,600	U767D25VH562M19X79LL	0 750 × 3.125	26.0	94	13	9.57	13 95
	1,800	U767D25VH182M22X29LL	0.875 × 1.125	74.0	21.0	27	4.09.	6.75
	3,300	U767D25VH332M22X41LL	0.875 × 1.625	44.0	13.4	19	6.09	9.72
25 Volts	3,900	U767D25VH392M22X41LL	0.875 x 1.625	37.0	11.9	17	6.67	10.30
32 Volta Surge	5,600	U767D25VH562M22X54LL	0.875 × 2.125	25.0	8.8	12	9.04	13.33
	6,800	U767D25VH682M22X67LL	0.875 x 2.625	20.0	6.9	10	11.04	16.48
	8,200	U767D25VH822M22X79LL	0.875 × 3.125	16.0	8.0	9	13,33	19.10
	2,700	U767D25VH272M25X29LL	1.000 × 1.125	55.0	15.0	21	5.17	9.04
	4,700	U767D25VH472M25X41LL	1.000 x 1.625	28.Ŭ	Ŷ.Ũ	14	8.32	12.87
Ļ	6,800	U767D25VH682M25X54LL	1.000 × 2.125	20.0	7.0	11	10.91	16.19
	10,000	U767D25VH103M25X67LL	1.000 × 2.625	16.0	5,9	9	13.33	19.23
Ļ	12,000	U767D25VH123M25X79LL	1.000 x 3.125	13.0	5.0	8	15.95	22.44
	15,000	U767D25VH153M25X92LL	1.000 x 3.625	10.0	4.2	B	19.43	26.18
	820							
ŀ	1,000	U767D35VH821M19X29LL	0.750 x 1.125	130.0	32.0	39	2.82	5.30
ŀ	1,500	U767D35VH102M19X41LL	0.750 x 1.625	105.0	22.0	29	3.61	6.91
ŀ	2,200	U767D35VH152M19X41LL	0.750 × 1.825	70.0	19.0	26	4.42	7.44
	3,300	U767D35VH222M19X54LL	0.750 × 2.125	48.0	13.0	19	5.96	10.01
	the second s	U767D35VH332M19X67LL	0.750 × 2.625	37.0	11.0	16	7.44	11.97
F		U767D35VH122M22X29LL	0.750 × 3.125	30.0	9.4	13	8.91	13.95
		U767D35VH222M22X41LL	0.875 x 1.125	90.0	21.0	27	3.72	6.75.
35 Volts	the second s	U767D35VH272M22X54LL	0.875 x 1.625	45.0	11.9	17	6.03	10.30
44 Voits Surge	the second se	U767D35VH332M22X54LL	0.875 × 2.125	38.0	10.2	15	7.39	12.41
F		U767D35VH472M22X67LL	0.875 x 2.125	31.0	<u>ā.</u> 8	12	8,12	13.33
F		U767D35VH562M22X79LL	0.875 × 2.625	24.0	6.9	10	10.08	16.48
F	the second s	U767D35VH182M25X29LL	0.875 × 3.125	19.0	6.0	9	12.23	19.10
F		U767D35VH182M25X29LL	1.000 x 1.125	67.0	15.0	21	4.69	9.04
}		U787D35VH472M25X54LL	1.000 × 1.625	34.0	9.0	14	7.55	12.87
1		UTUTUJJVNATENIZJAJALL	1.000 x 2.125	23.0	7.0	11	10.19	16,19
H	6 800	1767D35V/W682M26VE2:	1 000 0 001					
		U767D35VH682M25X67LL U767D35VH822M25X79LL	1.000 × 2.625 1.000 × 3.125	18 0 15.0	5 9 5.0	9	12.58 14.85	19.23

* The case sizes in table are with no sleeve, refer to diagrams for case sizes with sleeve.


United Chemi-Con, Inc. 9801 W. Higgins Road, Rosemont, IL 60018 Tel 847-696-2000 Fax 847-696-9278 www.chemi-con.com 298

ALUMINUM ELECTROLYTIC CAPACITORS


High Ri series	pple Low Imped	ance	Low impedance	Anti-So Feature	elvent					
 Lower impedance at h Smaller case size and Specifications 			нс			ID naller HV			0 V 850)	
Item					Performa	ance Characte	eristics	·		
Category Temperature Range	-40 ~ +105°C									
Rated Voltage Range	6.3 ~ 50V									
Rated Capacitance Range	22 ~ 6800µF									
Capacitance Tolerance	±20% at 120Hz,	20°C						×		
Leakage Current	After 2 minutes' a	pplication	of rated volta	age, le	eakage current	is not more the	an 0.01CV or 3	(µA), whicheve	er is greater.	
	Rated voltage (V)		6.	3	10	16	25	35	50	120Hz
tan δ	tan δ (M	AX.)	0.2	22	0.19	0.16	0.14	0.12	0.10	20°C
	For capacitance	of more th	an 1000µF, a	add 0.	02 for every inc	crease of 1000	, μF.			
	Rated volta	age (V)	6.	3	10	16	25	35	50	120Hz
Stability at Low Temperature	Impedance ratio	Z-25'C/Z+	-20°C 2	!	2	2	2	2	2	1
÷ .	ZT / Z20 (MAX.)	Z-40'C/Z+	-20'C 3	1	3	3	3	3	3	1
	After an applicati \$\$\phi D=8 : 3000 hour meet the character	s, φD=10	: 4000 hours	at 10	05°C the peak v					rs
Endurance	Capacitance change Within ± 25% of initial value									
	tan s		200% or less	s of Ini	tial specified va	llue				
an an the second se	Leakage current		initial specifie	ed valı	ue or less					
Marking	Printed with white	color lette	er on black s	leeve.						

Radial Lead Type

-13 ⁻¹¹

Type numbering system (Example : 10V 3300µF)

X Configuration

φD	Pb-free leadwire Pb-free PET sleeve	Sn-Pb finished leadwire PVC sleeve (containing Pb
5	DD	DH
6.3	ED	EH
8.10	PD	PH .
12.5 - 16	HD	ĤH

* Please contact to us if other configurations are required.

Please refer to page 19, 20, 21 about the formed or taped product spec. Please refer to page 3 for the minimum order quantity.

#In case L > 25 for the ϕ 12.5 dia. unit, lead dia. ϕ d = 0.8mm.

series

Standard ratings

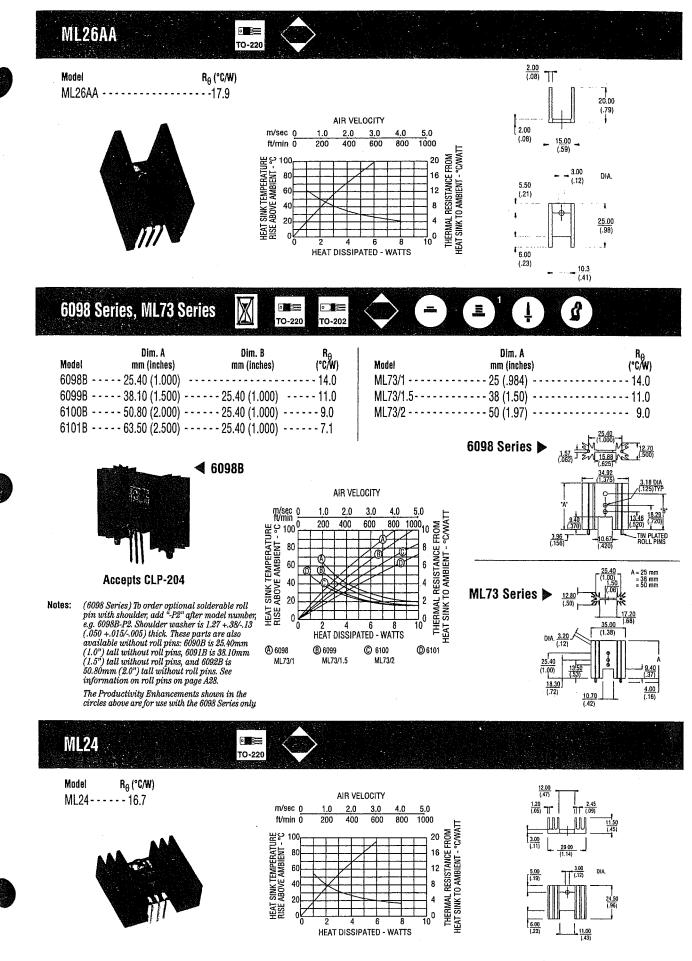
	V (Code)		35 (1	V) *			50 (1	H)	
$ \rangle >$	ltem	Case size	Impedance	ə (Ω MAX.)	Rated ripple (mA rms)	Case size	Impedance	ə (Ω MAX.)	Rated ripple (mA rms)
Cap.(µF)	Code	(mm)	20°C / 100kHz	-10°C / 100kHz	105°C / 100kHz	(mm)	20°C / 100kHz	10°C / 100kHz	105°C / 100kHz
22	220					5×11	0.34	1.18	238
33	330	5×11	0.30	1.0	250				
56	560	6.3 × 11	0.13	0.41	405	6.3×11	0.14	0.50	385
100	101					8×11.5	0.074	0.22	724
120	121		,			8 × 15	0.061	0.18	950
150	151	8×11.5	0.072	0.22	760	10 × 12.5	0.061	0.18	979
180	181					8 × 20	0.046	0.14	1190
220	221	8 × 15	0.056	0.17	995	10 × 16	0.042	0.12	1370
220	221	▲10 × 12.5	0.053	0.16	1030	10 × 10	0.042	0.12	1570
270	271	8×20	0.041	0.13	1250	10 × 20	0.030	0.090	1580
330	331	10 × 16	0.038	0.12	1430	10 × 25	0.028	0.085	1870
470	471	10×20	0.023	0.069	1820	12.5×20	0.027	0.068	2050
560	561	10 × 25	0.022	0.066	2150	12.5×25	0.023	0.059	2410
680	681	12.5×20	0.021	0.053	2360	12.5×31.5	0.021	0.052	2860
820	821					12.5 × 35.5	0.019	0.051	2960
020	021					▲16×20	0.023	0.059	2730
1000	102	12.5×25	0.018	0.045	2770	16 imes 25	0.021	0.056	3010
1200	122	12.5 × 31.5	0.016	0.041	3290				
1200	122	▲16×20	0.018	0.045	3140				
1500	152	12.5 × 35.5	0.015	0.039	3400				
1800	182	16 × 25	0.016	0.043	3460	·····			

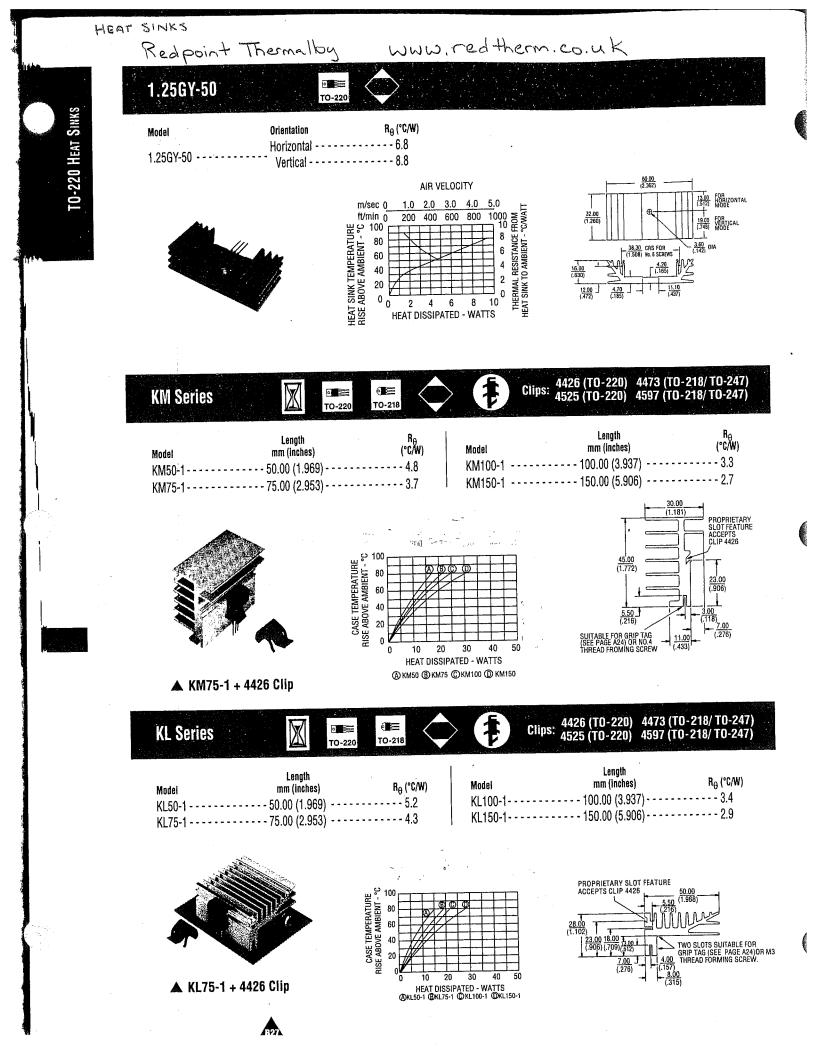
 \blacktriangle : In this case, [6] will be put at 12th digit of type numbering system.

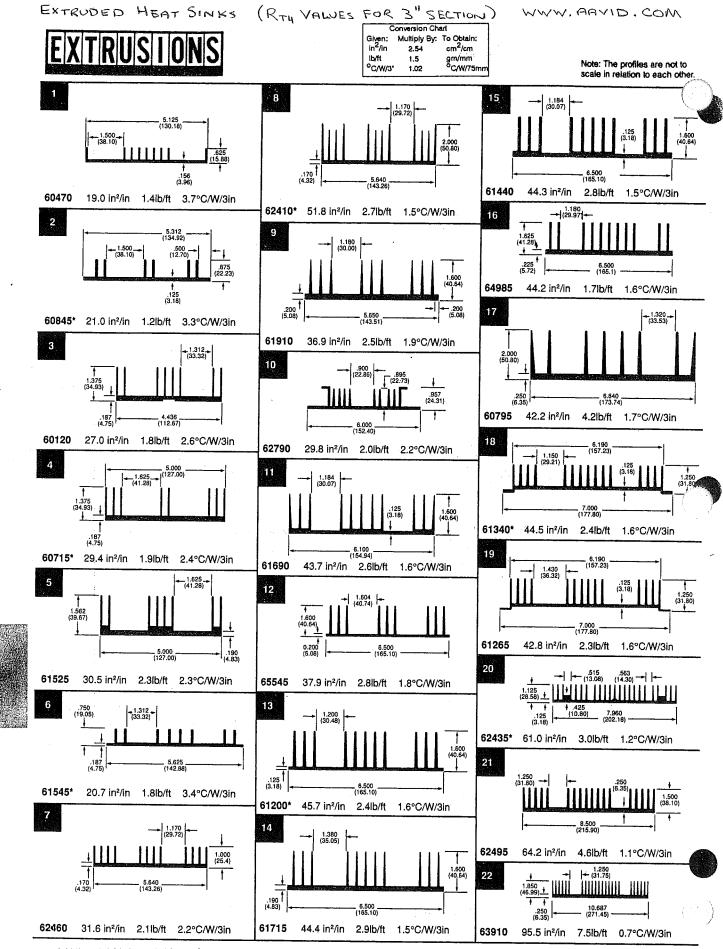
Cap. (uF) Frequency 50Hz 120Hz 1kHz 10kHz 100kHz 22 ~ 33 0.45 0.55 0.75 0.90 1.00 39 ~ 330 0.60 0.70 0.85 0.95 1.00 390 ~ 1000 0.75 0.90 0.98 1.00 0.65 1200 ~ 6800 0.75 0.80 0.95 1.00 1.00

• Frequency coefficient of rated ripple current

LXG Series


Standard Voltage Ratings - VN/Snap Mount ALUMINUM ELECTROLYTIC


Rated Voltage (WVDC)	Capacitance (µF)	Catalog Part Number	Nominal Case Size* D×L (mm)	Maximum ESR (Ω) at +20°C, 120Hz	Maximum Impedance (mΩ) at +20°C, 30kHz	Maximum Ripple Curren (A rms) at +105°C, 120Hz
				0.001	65	2,19
	8,200	LXG25VN822M35X25T2	35 × 25	0.061		2.76
25 Volts	12,000	LXG25VN123M35X30T2	35 × 30	0.041	45	3.16
32 Volts Surge	15,000	LXG25VN153M35X35T2	35 × 35	0.033		3,16
or fond or go	18,000	LXG25VN183M35X40T2	35 × 40 35 × 50	0.028	30	4.7
	27,000	LXG25VN273M35X50T2	35 X 50	0.018	£3 <u>.</u>	4.7
	2,200	LXG35VN222M22X25T2	22 × 25	0,188	120	1.1
	3,300	LXG35VN332M22X30T2	22 × 30	0.126	100	1.42
	3,900	LXG35VN392M22X35T2	22 × 35	0.106	80	1.58
	4,700	LXG35VN472M22X40T2	22 × 40	0.088	70	1.78
	6,800	LXG35VN682M22X50T2	22 × 50	0.061	50	2.26
	3,300	LXG35VN332M25X25T2	25.4 × 25	0.126	90	1.41
	3,900	LXG35VN392M25X30T2	25.4 × 30	0.106	70	1.58
	5,600	LXG35VN562M25X35T2	25.4 × 35	0.074	60	1.98
	6,800	LXG35VN682M25X40T2	25.4 × 40	0.061	50	2.24
35 Volts	8,200	LXG35VN822M25X50T2	25.4 × 50	0.051	40	2,57
44 Volts Surge	4,700	LXG35VN472M30X25T2	30 × 25	0.088	70	1.77
i rivolta ourge	5,600	LXG35VN562M30X30T2	30 × 30	0.074	50	1.98
	8,200	LXG35VN822M30X35T2	30 × 35	0.051	40	2.5
4	10,000	LXG35VN103M30X40T2	30 × 40	0.041	35	2.86
	12,000	LXG35VN123M30X50T2	30 × 50	0.035	25	3.32
	5,600	LXG35VN123M35X25T2	35 × 25	0.074	65	2.03
		LXG35VN822M35X30T2	35 × 20	0.051	45	2.55
	8,200		35 × 30	0.041	38	2.88
	10,000	LXG35VN103M35X35T2		0.035	30	3,3
	12,000	LXG35VN123M35X40T2	35 × 40	0.033	23	4,29
	18,000	LXG35VN183M35X50T2	35 × 50	0.023	23	4,25
	1,500	LXG50VN152M22X25T2	22 × 25	0.221	120	1.02
	1,800	LXG50VN182M22X30T2	22 × 30	0.184	100	1.17
	2,200	LXG50VN222M22X35T2	22 × 35	0.151	80	1.33
	2,700	LXG50VN272M22X40T2	22 × 40	0.123	70	1.51
	3,900	LXG50VN392M22X50T2	22 × 50	0.085	50	1.91
	1,800	LXG50VN182M25X25T2	25.4 × 25	0.184	90	1.17
	2,700	LXG50VN272M25X30T2	25.4 × 30	0.123	70	1,47
	3,300	LXG50VN332M25X35T2	25.4 × 35	0,10	60	1.7
	3,900	LXG50VN392M25X40T2	25.4 × 40	0,085	50	1.89
50 Volts	5,600	LXG50VN562M25X50T2	25.4 × 40	0.059	40	2.38
		LXG50VN272M30X25T2	30 × 25	0.123	70	1.5
63 Volts Surge	2,700	·····	30 × 23	0.10	50	1.7
	3,300	LXG50VN332M30X30T2		0.071	40	2.11
	4,700	LXG50VN472M30X35T2	30 × 35	0.059	35	2.39
	5,600		30 × 40 30 × 50	0.039	25	2.79
	6,800	LXG50VN682M30X50T2		0.049	65	1.74
	3,300	LXG50VN332M35X25T2	35 × 25		45	2,16
	4,700	LXG50VN472M35X30T2	35 × 30	0.071	38	2.41
	5,600	LXG50VN562M35X35T2	35 × 35		30	2.78
	6,800	LXG50VN682M35X40T2 LXG50VN103M35X50T2	35 × 40 35 × 50	0.049	23	3.57
	10,000	LXG50VINT05IVI55X5012	33 × 30	0,000		
	1,000	LXG63VN102M22X25T2	22 × 25	0.249	120	1.0
	1,200	LXG63VN122M22X30T2	22 × 30	0.207	100	1,15
	1,500	LXG63VN152M22X35T2	22 × 35	0.166	80	1.32
	1,800	LXG63VN182M22X40T2	22 × 40	0.138	70	1.49
	2,700	LXG63VN272M22X50T2	22 × 50	0,092	50	1.92
63 Volts	1,200	LXG63VN122M25X25T2	25.4 × 25	0.207	90	1.15
	1,800	LXG63VN122M25X20T2	25.4 × 30	0.138	70	1.45
79 Volts Surge				0.138	60	1.67
	2,200	LXG63VN222M25X35T2	25.4×35		50	1.9
	2,700	LXG63VN272M25X40T2	25.4 × 40	0.092		
	3,300	LXG63VN332M25X50T2	25.4 × 50	0.075	40	2.2
	1,800	LXG63VN182M30X25T2	30 × 25	0.138	70	1.48
	2,200	LXG63VN222M30X30T2	30 × 30	0.113	50	1.68


*The case sizes in table are with no sleeve, refer to diagrams for case sizes with sleeve.

SAMPLE MUCHNING

WWW. REDTHERM. CO. UK

92 AAVID ENGINEERING, INC. One Kool Path; P.O. Box 400, Laconia, NH 03247 Tel 603-528-3400, FAX 603-528-1478, TWX 510-298-1127

	DATA
PAD	CHNICAL
SIL	Ĕ

SIL-PAD 400®

Primary use is to electrically isolate power from cleaning agents. Contact the Jactory for with age. The reinforcing fiberglass gives excellent cut-through resistance and Silretardant and is specially formulated for sources from heat sinks. Sil-Pad 400 has Pad 400 is non-toxic and resists damage silicone rubber and fiberglass. It is flame actually improves its thermal resistance use as a thermally conductive insulator. characteristics. Surfaces are pliable and Sil-Pad 400 is the original Sil-Pad excellent heat dissipation. Sil-Pad 400 material. Sil-Pad 400 is a composite of allow complete surface contact with excellent mechanical and physical special thicknesses of Sil-Pad 400.

SIL-PAD 600[®]

provides higher thermal performance than standard materials while remaining cost nitride loaded silicone elastomer which Sil-Pad 600 is an alumina / boron competitive.

SIL-PAD 1000®

conductive insulator. Sil-Pad 1000 has the while offering a 35% reduction in thermal characteristics of our Sil-Pad 400 material silicone rubber and fiberglass. It is boron resistance. Sil-Pad 1000 is non-toxic and includes a flame retardant and is specially same excellent mechanical and physical resists damage from cleaning agents. It nitride filled and offers low thermal Sil-Pad 1000 is a composite of formulated for use as a thermally resistance

designed for demanding military/aerospace

performance, high reliability thermally

conductive insulator. Sil-Pad 2000 is Sil-Pad 2000 is Bergquist's high

applications, Sil-Pad 2000 complies with

nilitary standards.

and commercial applications. In these

SIL-PAD 1500[®]

thermal and dielectric performance of the filler/binder matrix. The result is a "grease

elastomer is formulated to maximize the

This boron nitride loaded silicone

Sil-Pad 1500 offers enhanced thermal performance thermal applications while performance in a fiberglass reinforced meeting specific cost considerations. material. It is designed for high

PO	~	• 23				۰.	ю.	; ;	` = `					.1	,			. 4		ሪ ፲፱ 	1
POLY-PAD 400	Mauve	0.4	55	-20 to	+150	0.9	.009±.001	[.23±.025]	1.0 × 10 ¹¹	14500		ar mailte a tart so traffic of a set			2.0-2.1	7 (50)	100	18 Notice and the state of the second	10	Fiberglass	的资源的。 如何的资源的资源的资源的。
医 漫	Black	0.1	NA		+160	2.5	.006±.001	(,15 ±.025)	1.0 × 10 ²	N.A.	0.59	ALLER AL	0.23	06			25	4	4	Silicone/ Alum Foil	
SIL-PAD K-10	Beige	0.2	3.7	-60 to	+180		.006±.001	(.15±025)	1.0 × 10'2	6000			60.	06		. 5 [35]	30	5 1.100 - 1.100	40	Silicone/ Kapton	
SILPAD K-6	Blue/Green	-30 ⁻	4.0	-60 to	+180	L.L.	.006±.001	(,15±.025)	1.0×10 ¹²	6000				06		5	30		40	Silicone/ Kapton	
SILPAD SILPAD S 2000 K4	Sea Gay	40	5.0	-20 10	180	6.0	015±001 006±001 006±001	38±025) {\15±025) -{\15±025}	0×10" 1.0×10" 1.0×10	6000	8 2		.07		創設		30		40	Silicone/ Kapton	ation Native and Molecular
SIL-PAD 2000	White	0.2	4.0	-60 09		35	015±.001	[38.±025]	iio ×o:	4000	0.26	0.07	0.10 0.03	80. 1	15	1	65 AS		20	Fiberglass	ictiva alectrical insul Buttatissina sin
医白线 法 等	Green	12 公司	2011	1000	180 Hand	20	100 ±0 10.	[.25±025]	1.0 × 10	4000				調調	副語	ion Troit			管理	Silicone/ s. Fiberglass	ipation of thermally condi- pastanderd feet methodal
ORA-IIS			體		1180	12	009 ± 001 000 ± 001 01 0 ± 000	(23±025) [23±025] [25±025	0×101 0×101 10×10	15 × 10	2		88		15			時間		e/ Silcone/ ass Fiberglass	elle strehgth and elo strengt freedbreed is
10 SIL	Green	0.35	5.0	90.09	+, +180	01								85		юс. 196		-18	語語	 Silcone/ Fiberglass 	leasurement of the predicts of the rel
SIL-PAD 9 400(.00	Get	45 ¹	5.5	-90 to	4180	60	100:∓Z00:	(.18±.025)		005E		125	11 11	58	2.021	5		18		Silicone/	andy adapting them to the weater and the
SIL-PAD SIL-PAD SIL 4001.0091 4001.0071 6001	Gray		5.5	-60 to	180	.	100. ±6 00.	\[:Z3±025]	olcal 1.0 × 10''	15×10° 1 4500	cent. 1.40	6°C 25	cent sd 11 sc 07		2.02.1	Э. 1967	100	18	04	Fiberglass	* ASTM is cum
									volume Reliming. Orm Merre Typical Normal	Moja Residenti Votesge (minimum KG) - 4500	thermal Vectorin Welght Loss Fearen (Thil) May As Mandactured	Post Cure 24 Hiss 440°F, 225 °C	volarule Condencable Material Percent. Maximulin (SVEN) As Manufactured. Door Princ 3a Unit Annot 715 or	Joerse Shore A		t, Typical any anoth	bs/hdh		Elongebon, W.45° to warp and fill*		Sy conversions are approximitations and shared of the ASTM is currently as proposed to be entraction conversions and and and and an approximation of the free free free free free free free fr
		Themai Resistance, "C/watt	Dielectric Constrant, 1000 (Hz)	Continueus lose	Č , J	hemai Conductivity W/m+Knominai	8 8		Resistanty C	ALC: NO DECIDE	hernal Vacuum Walght Los Mili Max, As Manufacured	th Cure 24 Hi	Condênsabi Im (CVCM) A	Hardness Shore A	Specific Gravity	Tensile Strength, Kpsi, Typical	Breaking Strength, Lbs/hith	$\mathbf{\hat{n}} = \mathbf{\hat{n}}$	1.5F.9. 100	lition -	bra are approximit
Table 3	Color	Themal	Dielectri	Contrue	Temp. 6	Themal M/m	miches Inches	(mm)	Volume Re Nomel	Nota	anema annan	Por la	Volatile Maximu	Hardne	Specific	Tensile	Breakin	RVA	Elongat	Construction	SI CONVERS

SIL-PAD K-4®

SIL-PAD 2000®

strength, physically tough DuPont Kapton requires no thermal grease to transfer heat, is available in customized shapes and sizes thermal transfer properties of well known and saves time and costs while increasing developed film which has high thermal insulator that withstands high voltages, Bergquist's Sil-Pad K-4 is designed MT® film. Kapton MT® is a specially conductivity. The result is a durable and developed in conjunction with Sil-Pad rubber with high dielectric DuPont. Sil-Pad K-4 combines the

SIL-PAD K-6®

Sil-Pad K-6 is a medium performance barrier against "cut-through" and resultant insulator. Thermally conductive Kapton continuous physically tough dielectric MT® film is coated with an aluminum performance. Kapton film provides a Kapton based thermally conductive elastomer to deliver "boron nitride" oxide/boron nitride filled silicone assembly failures.

٩,

SIL-PAD K-10®

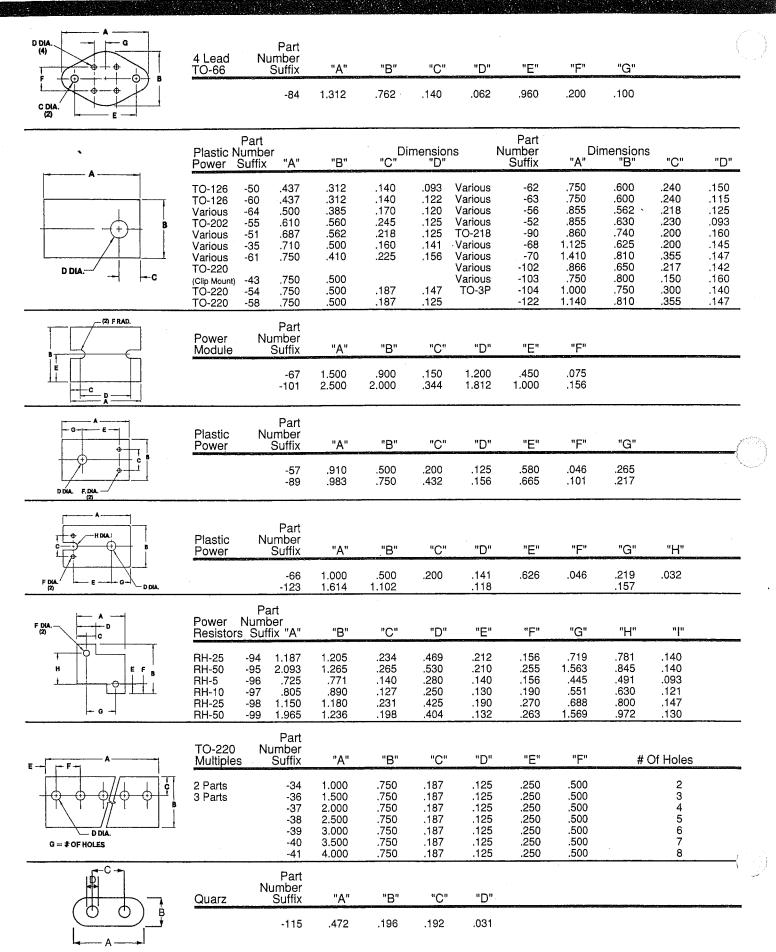
Sil-Pad K-10 is a high performance insulator which combines Kapton MT

productivity.

electrical requirements of high reliability

electronic packaging applications.

free", conformable material capable of meeting or exceeding the thermal and 2


replace ceramic insulators such a-Polyimide film with boron nitride Alumina which are expensive and silicone rubber. K-10 is designed Beryllium Oxide, Boron Nitride . easily. K-10 eliminates breakage much less than ceramics.

SIL-PAD 200®

to 3 mm) material. Sil-Pad 200 is Ask about Sil-Pad 200, our > non-reinforced 30 mil to 125 mil use as a gasket or for filling voidmounting surfaces in an assembly

WWW.BERGEWISTCOMPANY. COM/THERM.HTWI BERGQUIST CORP. SIL-PAD THERMAL INTERFACE PADS

SIL-PAD® Standard Configurations

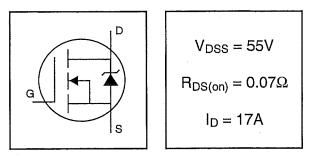
International ISR Rectifier HEXFET[®] Power MOSFET

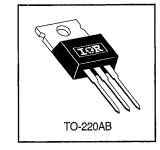
- Advanced Process Technology
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated

Description

Fifth Generation HEXFET® power MOSFETs from International Rectifier utilize advanced processing techniques to achieve the lowest possible on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient device for use in a wide variety of applications.

The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.


Absolute Maximum Ratings Units Max. Parameter I_D @ T_C = 25°C Continuous Drain Current, VGS @ 10V 17 I_D @ T_C = 100°C Continuous Drain Current, VGS @ 10V 12 А 68 Pulsed Drain Current ① IDM W 45 P_D @T_C = 25°C Power Dissipation W/°C 0.30 Linear Derating Factor ٧ ±20 Gate-to-Source Voltage VGS mJ 71 Single Pulse Avalanche Energy @ EAS 10 А Avalanche Current® AR Repetitive Avalanche Energy® 4.5 mJ E_{AR} Peak Diode Recovery dv/dt ③ 5.0 V/ns dv/dt Operating Junction and -55 to + 175 TJ °C Storage Temperature Range TSTG 300 (1.6mm from case) Soldering Temperature, for 10 seconds 10 lbf•in (1.1N•m) Mounting torque, 6-32 or M3 screw.


Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units
Rejc	Junction-to-Case			3.3	
Recs	Case-to-Sink, Flat, Greased Surface		0.50	·	°C/W
R _{eja}	Junction-to-Ambient			62	

www.irf.com

PD - 91354A

IRFZ24N

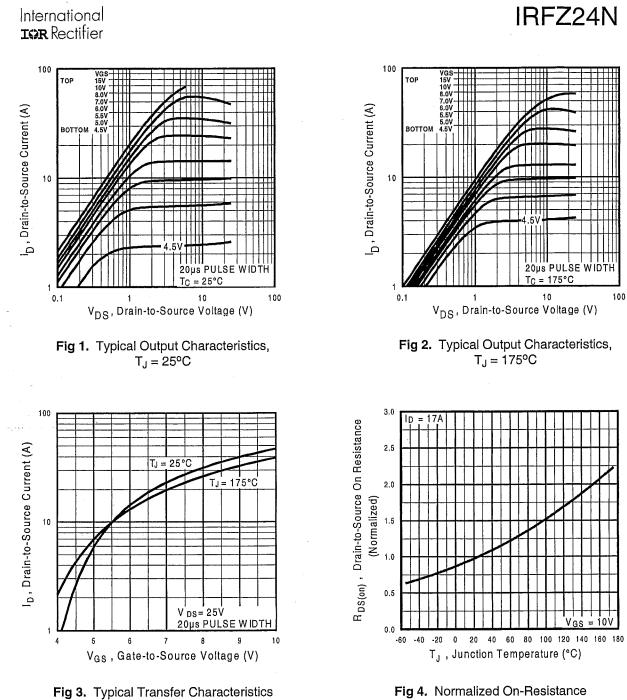
International **197** Rectifier

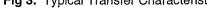
Electrical Characteristics @ $T_J = 25^{\circ}C$ (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V(BR)DSS	Drain-to-Source Breakdown Voltage	55			V	V _{GS} = 0V, I _D = 250µA
ΔV _{(BR)DSS} /ΔTJ	Breakdown Voltage Temp. Coefficient		0.052		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		—	0.07	Ω	V _{GS} = 10V, I _D = 10A ④
V _{GS(th)}	Gate Threshold Voltage	2,0	·	4.0	V	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$
g fs	Forward Transconductance	4.5			S	$V_{DS} = 25V, I_D = 10A$
I	Drain-to-Source Leakage Current			25		$V_{DS} = 55V, V_{GS} = 0V$
IDSS	Drain-10-Source Leakage Current	-		250	μA	$V_{DS} = 44V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
1	Gate-to-Source Forward Leakage			100	nA	$V_{GS} = 20V$
IGSS	Gate-to-Source Reverse Leakage			-100		V _{GS} = -20V
Qg	Total Gate Charge			20		I _D = 10A
Q _{gs}	Gate-to-Source Charge			5.3	nC	$V_{DS} = 44V$
Q _{gd}	Gate-to-Drain ("Miller") Charge			7.6	1	V_{GS} = 10V, See Fig. 6 and 13 \circledast
t _{d(on)}	Turn-On Delay Time		4.9			$V_{DD} = 28V$
t _r	Rise Time		34]	I _D = 10A
t _{d(off)}	Turn-Off Delay Time		19		ns	$R_{G} = 24\Omega$
tr	Fall Time	·	27]	R _D = 2.6Ω, See Fig. 10 ④
L _D	Internal Drain Inductance		4.5			Between lead,
-0			4.5		nH	6mm (0.25in.)
	Internal Source Inductance					trom package
L _S	internal Source inductance		7.5			and center of die contact
Ciss	Input Capacitance		370			V _{GS} = 0V
Coss	Output Capacitance		140		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		65			f = 1.0MHz, See Fig. 5

Source-Drain Ratings and Characteristics

	Parameter	Min.	Typ.	Max.	Units	Conditions
Is	Continuous Source Current (Body Diode)			17	А	MOSFET symbol
Ism	Pulsed Source Current (Body Diode) ①			68	~	integral reverse p-n junction diode.
V _{SD}	Diode Forward Voltage			1.3	V	T _J = 25°C, I _S = 10A, V _{GS} = 0V ④
t _{rr}	Reverse Recovery Time		56	83	ns	$T_J = 25^{\circ}C, I_F = 10A$
Qrr	Reverse RecoveryCharge		120	180	nC	di/dt = 100A/µs @

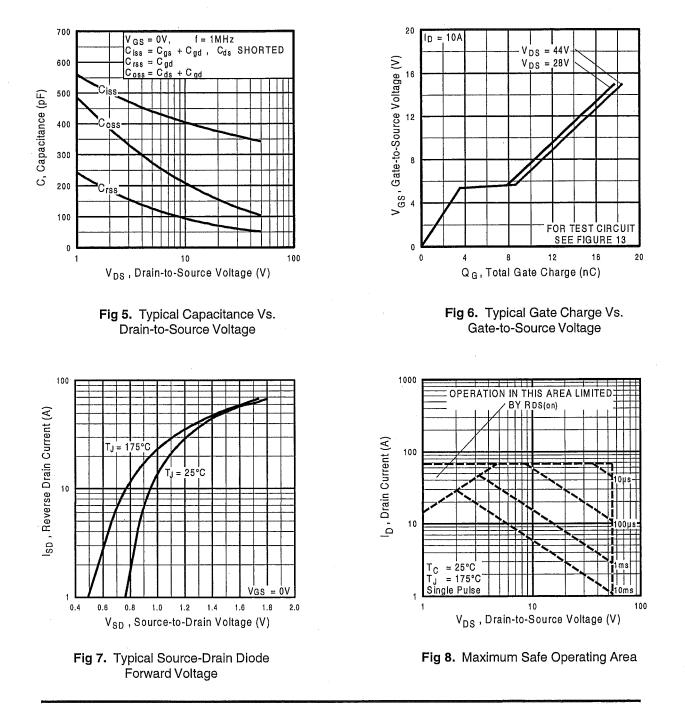

Notes:


- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- \mathbb{O} V_{DD} = 25V, starting T_J = 25°C, L = 1.0mH R_G = 25 Ω , I_{AS} = 10A. (See Figure 12)

3 I_{SD} \leq 10A, di/dt \leq 280A/µs, V_{DD} \leq V_{(BR)DSS}, T_J \leq 175°C

④ Pulse width \leq 300µs; duty cycle \leq 2%.

www.irf.com



Vs. Temperature

www.irf.com

IRFZ24N

International **IGR** Rectifier

www.irf.com

IRFZ34N

Electrical Characteristics @ $T_J = 25^{\circ}C$ (unless otherwise specified)

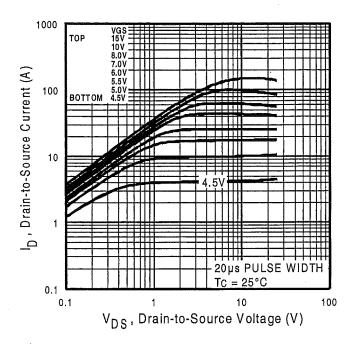
	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	55			V	$V_{GS} = 0V, I_D = 250\mu A$
ΔV _{(BR)DSS} /ΔTJ	Breakdown Voltage Temp. Coefficient		0.052		V/°C	Reference to 25°C, $I_D = 1mA$
R _{DS(ON)}	Static Drain-to-Source On-Resistance			0.040	Ω	$V_{GS} = 10V, I_{D} = 16A$
V _{GS} (th)	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}, I_D = 250 \mu A$
g fs	Forward Transconductance	6.5			S	V _{DS} = 25V, I _D = 16A
Inco	Drain-to-Source Leakage Current			25	μA	$V_{DS} = 55V, V_{GS} = 0V$
IDSS	Diali-10-30010e Leakage Ouriern			250	μ7	$V_{DS} = 44V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
lass	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
GSS	Gate-to-Source Reverse Leakage			-100		$V_{GS} = -20V$
Qg	Total Gate Charge		·	34		I _D = 16A
Q _{gs}	Gate-to-Source Charge			6.8	nC	$V_{DS} = 44V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		·	14		V_{GS} = 10V, See Fig. 6 and 13 \oplus
t _{d(on)}	Turn-On Delay Time		7.0			$V_{DD} = 28V$
tr	Rise Time		49		ns	I _D = 16A
t _{d(off)}	Turn-Off Delay Time		31		110	$R_G = 18\Omega$
t _f	Fall Time		40			R _D = 1.8Ω, See Fig. 10 ④
1	Internal Drain Inductance		4.5			Between lead,
LD			4.5		nH	6mm (0.25in.)
1	latens at Oanna lashatasa		75		111.1	from package
Ls	Internal Source Inductance		7.5			and center of die contact
Ciss	Input Capacitance		700	·		$V_{GS} = 0V$
Coss	Output Capacitance		240		pF	V _{DS} = 25V
C _{rss}	Reverse Transfer Capacitance		100			f = 1.0MHz, See Fig. 5

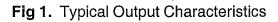
Source-Drain Ratings and Characteristics

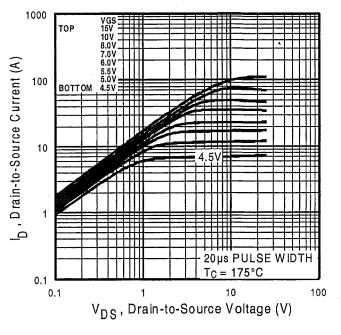
	Parameter	Min.	Тур.	Max.	Units	Conditions
ls	Continuous Source Current			29		MOSFET symbol
	(Body Diode)			20	A	showing the
Ism	Pulsed Source Current			100		integral reverse
	(Body Diode) ①					p-n junction diode.
V _{SD}	Diode Forward Voltage			1.6	V	$T_{J} = 25^{\circ}C, I_{S} = 16A, V_{GS} = 0V$ (4)
t _{rr}	Reverse Recovery Time		57	86	ns	$T_{\rm J} = 25^{\circ}{\rm C}, I_{\rm F} = 16{\rm A}$
Qrr	Reverse Recovery Charge		130	200	nC	di/dt = 100A/µs ⊛
t _{on}	Forward Turn-On Time	Intr	Intrinsic turn-on time is negligible (turn-on is dominated by $L_{S}+L_{D}$)			

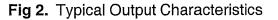
Notes:

① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)


 ③ I_{SD} \leq 16 A, di/dt \leq 420A/µs, V_{DD} \leq V_{(BR)DSS}, T_J \leq 175°C


④ Pulse width \leq 300µs; duty cycle \leq 2%.


 $V_{DD} = 25V$, starting T_J = 25°C, L = 410µH R_G = 25 Ω , I_{AS} = 16A. (See Figure 12)


International

IRFZ34N

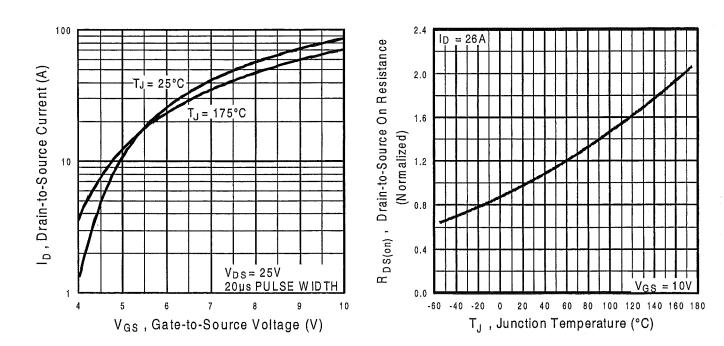
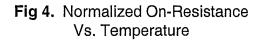
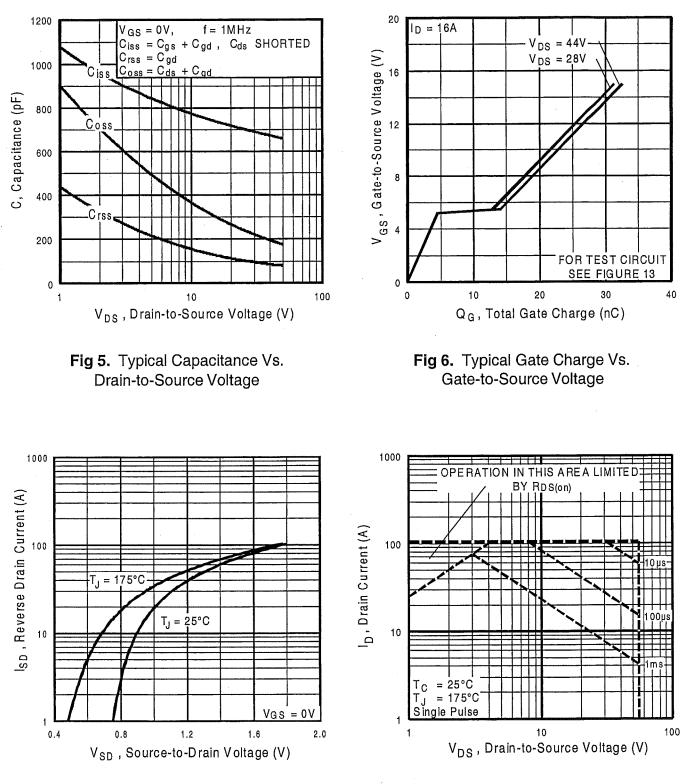




Fig 3. Typical Transfer Characteristics

IRFZ34N

International **TCR** Rectifier

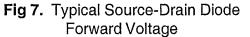
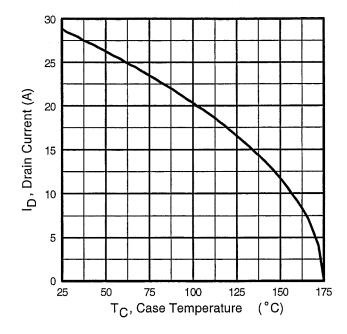
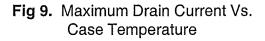




Fig 8. Maximum Safe Operating Area

International **IOR** Rectifier

IRFZ34N

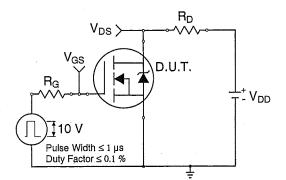


Fig 10a. Switching Time Test Circuit

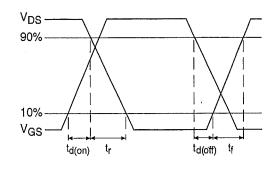


Fig 10b. Switching Time Waveforms

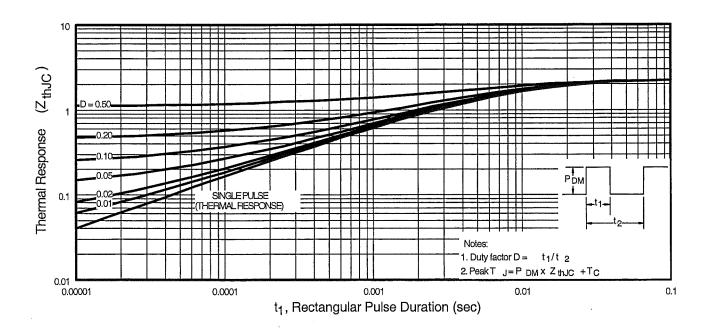


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

IRFZ24N

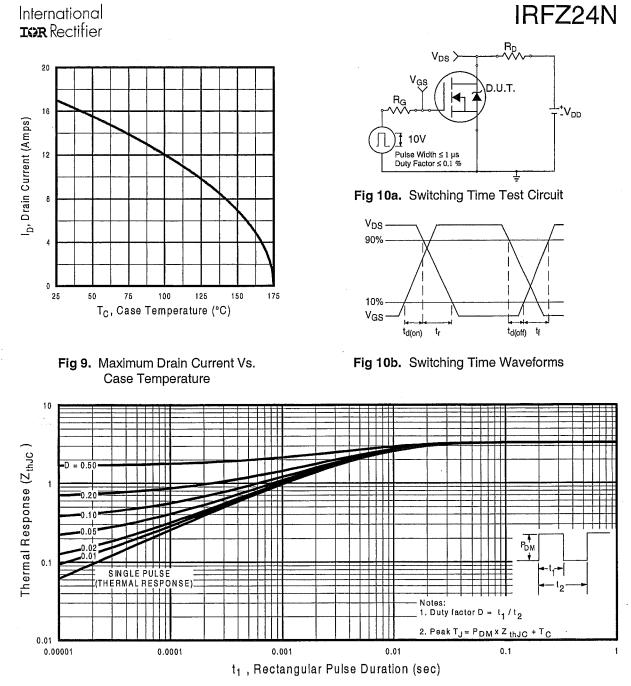
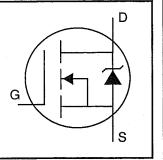


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

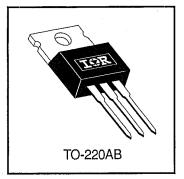
International **IPR** Rectifier

PD -9.1276C

HEXFET[®] Power MOSFET


- Advanced Process Technology
- Ultra Low On-Resistance
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Ease of Paralleling

Description


Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve the lowest possible on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient device for use in a wide variety of applications.

The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

Absolute Maximum Ratings

$$V_{DSS} = 55V$$

 $R_{DS(on)} = 0.040\Omega$
 $I_D = 29A$

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	29	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	20	A
I _{DM}	Pulsed Drain Current ①	100	
$P_D @T_C = 25^{\circ}C$	Power Dissipation	68	W
	Linear Derating Factor	0.45	W/ºC
V _{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy@	65	mJ
I _{AR}	Avalanche Current®	16	A
E _{AR}	Repetitive Avalanche Energy®	6.8	mJ
dv/dt	Peak Diode Recovery dv/dt 3	5.0	V/ns
TJ	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torque, 6-32 or M3 srew	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units
Rejc	Junction-to-Case			2.2	
R _{ecs}	Case-to-Sink, Flat, Greased Surface		0.50	·	°C/W
R _{0JA}	Junction-to-Ambient			62	

8/25/97

International

- Advanced Process Technology
- Ultra Low On-Resistance
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated

Description

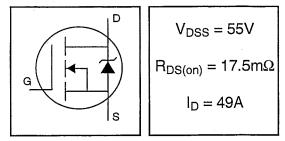
Advanced HEXFET[®] Power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

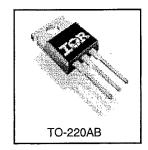
The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	49	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	35	A
IDM	Pulsed Drain Current ①	160	
P _D @T _C = 25°C	Power Dissipation	94	W
	Linear Derating Factor	0,63	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
I _{AR}	Avalanche Current®	25	A
E _{AR}	Repetitive Avalanche Energy®	9.4	mJ
dv/dt	Peak Diode Recovery dv/dt ③	5.0	V/ns
Tj	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torque, 6-32 or M3 srew	10 lbf•in (1.1N•m)	

Thermal Resistance


	Parameter	Тур.	Max.	Units	
Rejc	Junction-to-Case		1.5		
Recs	Case-to-Sink, Flat, Greased Surface	0.50		°C/W	
R _{BJA}	Junction-to-Ambient		62		


www.irf.com

PD - 94053

IRFZ44N

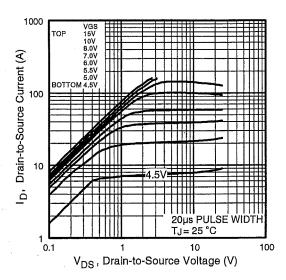
HEXFET[®] Power MOSFET

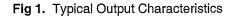
01/03/01

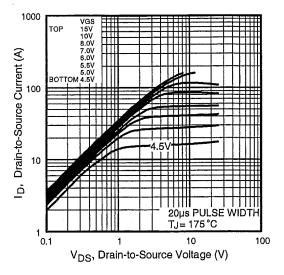
International **TOR** Rectifier

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	55			V	V _{GS} = 0V, I _D = 250μA
ΔV(BR)DSS/ΔTJ	Breakdown Voltage Temp. Coefficient		0.058		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		—	17.5	mΩ	V _{GS} = 10V, I _D = 25A ④
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}, I_D = 250 \mu A$
g fs	Forward Transconductance	19	-		S	$V_{DS} = 25V, I_{D} = 25A@$
1	Drain-to-Source Leakage Current		-	25	μA	$V_{DS} = 55V, V_{GS} = 0V$
DSS	Dialino-Source Leakage Current			250	μΑ	$V_{DS} = 44V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
1	Gate-to-Source Forward Leakage			100	nA	$V_{GS} = 20V$
GSS	Gate-to-Source Reverse Leakage			-100		V _{GS} = -20V
Qg	Total Gate Charge			63		$I_D = 25A$
Q _{gs}	Gate-to-Source Charge	—	1—	14	nC	$V_{DS} = 44V$
Q _{gd}	Gate-to-Drain ("Miller") Charge			23		V _{GS} = 10V, See Fig. 6 and 13
t _{d(on)}	Turn-On Delay Time		12			$V_{DD} = 28V$
t _r	Rise Time	—	60			I _D = 25A
t _{d(off)}	Turn-Off Delay Time		44	—	ns	$R_G = 12\Omega$
t _i	Fall Time		45			V _{GS} = 10V, See Fig. 10 ④
	betweet Durin Industrians		4.5			Between lead,
L _D	Internal Drain Inductance		4.0			6mm (0.25in.)
1			nH	from package		
L _S	Internal Source Inductance	<u> </u>	7.5			and center of die contact
Ciss	Input Capacitance		1470			V _{GS} = 0V
Coss	Output Capacitance		360			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		88	—	pF	f = 1.0MHz, See Fig. 5
E _{AS}	Single Pulse Avalanche Energy@		530©	1506	mJ	I _{AS} = 25A, L = 0.47mH
			ن م م م م م م م م م م م			we we we have a second s

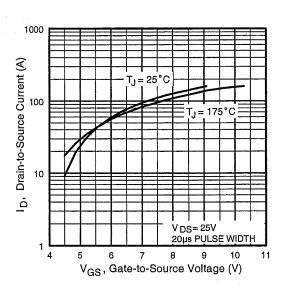
Electrical Characteristics @ $T_J = 25^{\circ}C$ (unless otherwise specified)

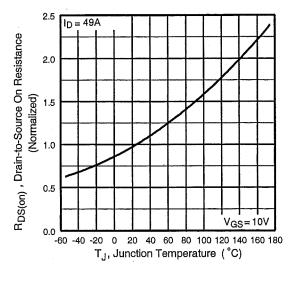

Source-Drain Ratings and Characteristics

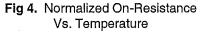

	Parameter	Min.	Тур.	Max.	Units	Conditions
ls	Continuous Source Current			49		MOSFET symbol
	(Body Diode)		43	Α	showing the	
ISM	Pulsed Source Current			— 160		integral reverse
	(Body Diode)①					p-n junction diode.
V _{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C$, $I_S = 25A$, $V_{GS} = 0V$ ④
t _{rr}	Reverse Recovery Time		63	95	ns	T _J = 25°C, I _F = 25A
Q _{rr}	Reverse Recovery Charge		170	260	nC	di/dt = 100A/µs ④
t _{on}	Forward Turn-On Time	Intr	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)			

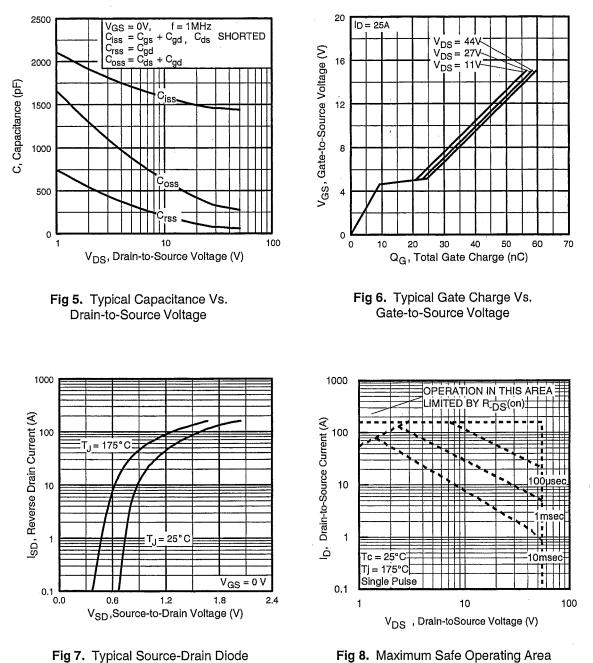

Notes:

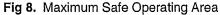
- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ⁽²⁾ Starting $T_J = 25^{\circ}C$, L = 0.48 mH $R_G = 25\Omega$, $I_{AS} = 25A$. (See Figure 12)
- () I_{SD} \leq 25A, di/dt \leq 230A/µs, V_{DD} \leq V_{(BR)DSS}, T_J \leq 175°C
- ④ Pulse width \leq 400µs; duty cycle \leq 2%.
- ⑤ This is a typical value at device destruction and represents operation outside rated limits.
- b This is a calculated value limited to $T_J = 175^{\circ}C$.





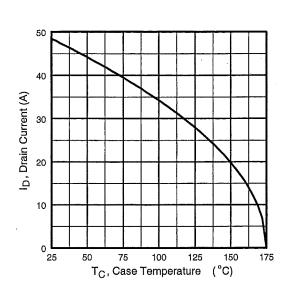


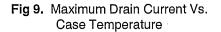




www.irf.com

International IOR Rectifier




www.irf.com

4

Forward Voltage

International

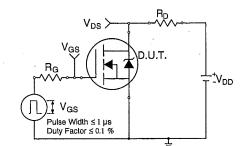


Fig 10a. Switching Time Test Circuit

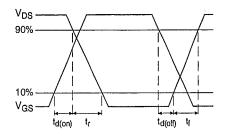


Fig 10b. Switching Time Waveforms

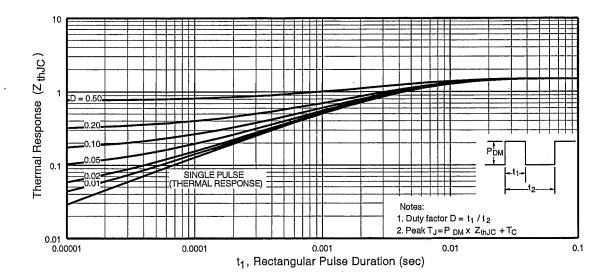


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

www.irf.com

International **ISPR** Rectifier

- Advanced Process Technology
- Ultra Low On-Resistance
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated

Description

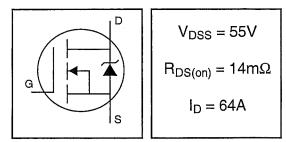
Advanced HEXFET[®] Power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

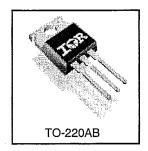
The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	64	
I _D @ T _C = 100°C Continuous Drain Current, V _{GS} @ 10V		45	A
IDM	Pulsed Drain Current ①	210	
P _D @T _C = 25°C	Power Dissipation	130	W
	Linear Derating Factor	0.83	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
I _{AR}	Avalanche Current®	32	A
E _{AR}	Repetitive Avalanche Energy①	13	mJ
dv/dt	Peak Diode Recovery dv/dt 3	5.0	V/ns
TJ	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torque, 6-32 or M3 srew	10 lbf•in (1.1N•m)	

Thermal Resistance


	Parameter	Тур.	Max.	Units
Rejc	Junction-to-Case		1.15	
Recs	Case-to-Sink, Flat, Greased Surface	0.50		°C/W
R _{eja}	Junction-to-Ambient		62	


www.irf.com

IRFZ48N

PD - 91406

HEXFET[®] Power MOSFET

1/3/01

IRFZ48N

International **ISPR** Rectifier

<u> </u>						
	Parameter	Min.	Тур.	Max.		Conditions
V(BR)DSS	Drain-to-Source Breakdown Voltage	55		·	V	V _{GS} = 0V, I _D = 250μA
ΔV _{(BR)DSS} /ΔTJ	Breakdown Voltage Temp. Coefficient		0.058	—	V/°C	Reference to 25° C, $I_{D} = 1$ mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			14	mΩ	$V_{GS} = 10V, I_D = 32A$ ④
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$
9fs	Forward Transconductance	24	—		S	$V_{DS} = 25V, I_D = 32A$
1	Drain-to-Source Leakage Current			25	μA	$V_{DS} = 55V, V_{GS} = 0V$
DSS	Diali-10-Source Leakage Current			250	μΑ	$V_{DS} = 44V, V_{GS} = 0V, T_J = 150^{\circ}C$
1	Gate-to-Source Forward Leakage			100	nA	$V_{GS} = 20V$
GSS	Gate-to-Source Reverse Leakage		—	-100		$V_{GS} = -20V$
Qg	Total Gate Charge			81		I _D = 32A
Q _{gs}	Gate-to-Source Charge			19	nC	$V_{DS} = 44V$
Q _{gd}	Gate-to-Drain ("Miller") Charge			30		$V_{GS} = 10V$, See Fig. 6 and 13
t _{d(on)}	Turn-On Delay Time		12			$V_{DD} = 28V$
tr	Rise Time	—	78			I _D = 32A
t _{d(off)}	Turn-Off Delay Time		34	—	ns	$R_{G} = 0.85\Omega$
tr	Fall Time		50			V _{GS} = 10V, See Fig. 10 ④
,	to be used. Durate the durate ways		4 5			Between lead,
LD	Internal Drain Inductance		4.5			6mm (0.25in.)
					nH	from package
L _S	Internal Source Inductance		7.5	—		and center of die contact
Ciss	Input Capacitance		1970			$V_{GS} = 0V$
Coss	Output Capacitance		470			V _{DS} = 25V
Crss	Reverse Transfer Capacitance		120		pF	f = 1.0MHz, See Fig. 5
E _{AS}	Single Pulse Avalanche Energy@		700⑤	1906	mJ	I _{AS} = 32A, L = 0.37mH

Electrical Characteristics @ $T_J = 25^{\circ}C$ (unless otherwise specified)

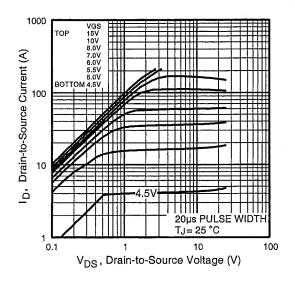
Source-Drain Ratings and Characteristics

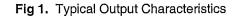
	Parameter	Min.	Typ.	Max.	Units	Conditions
ls	Continuous Source Current (Body Diode)			64	А	MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode)①			210		integral reverse p-n junction diode.
V _{SD}	Diode Forward Voltage			1.3	V	$T_{J} = 25^{\circ}C$, $I_{S} = 32A$, $V_{GS} = 0V$ ④
t _{rr}	Reverse Recovery Time		68	100	ns	T _J = 25°C, I _F = 32A
Q _{rr}	Reverse Recovery Charge		220	330	nC	di/dt = 100A/µs ④
t _{on}	Forward Turn-On Time	inti	Intrinsic turn-on time is negligible (turn-on is dominated by $L_{S}+L_{D}$)			

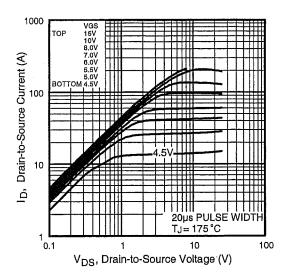
Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ⁽²⁾ Starting $T_J = 25^{\circ}$ C, L = 0.37mH $R_G = 25\Omega$, $I_{AS} = 32A$. (See Figure 12)

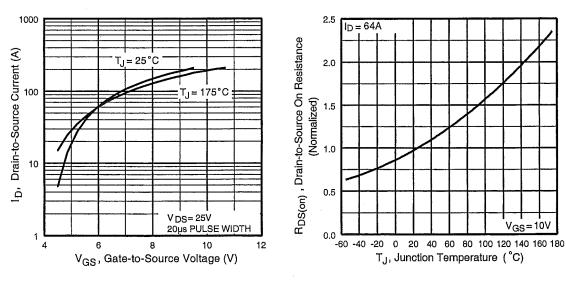
④ Pulse width \leq 400µs; duty cycle \leq 2%.

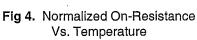

⑤ This is the destructive value not limited to the thermal limit.

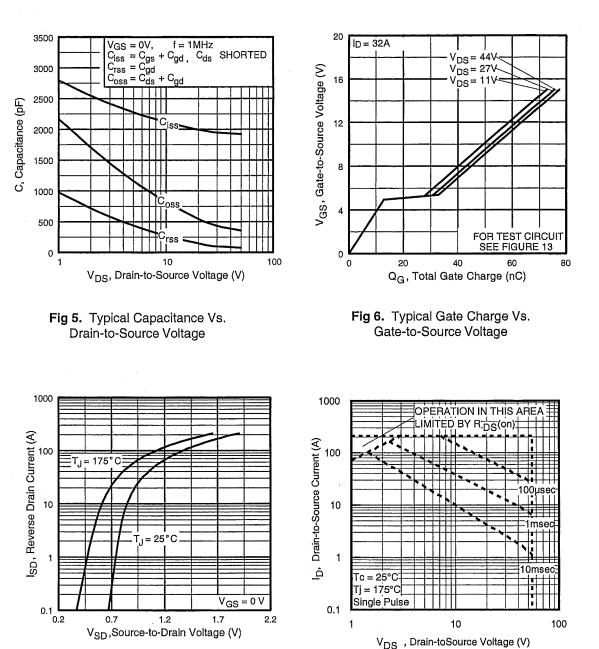

6 This is the thermal limited value.

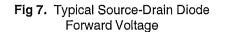

www.irf.com

IRFZ48N


International **IGR** Rectifier



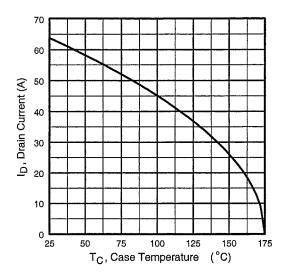


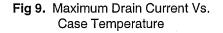


www.irf.com

IRFZ48N

International **TOR** Rectifier





www.irf.com

IRFZ48N

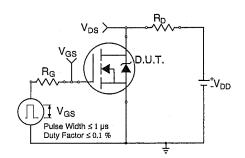


Fig 10a. Switching Time Test Circuit

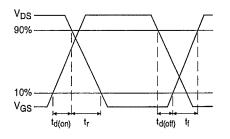


Fig 10b. Switching Time Waveforms

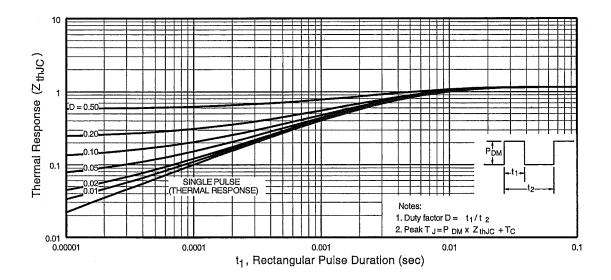


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

www.irf.com

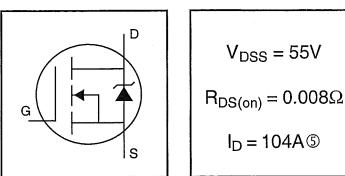
International **TOR** Rectifier

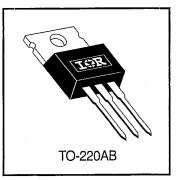
PD - 9.1325B

- Logic-Level Gate Drive
- Advanced Process Technology
- Ultra Low On-Resistance
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve the lowest possible on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient device for use in a wide variety of applications.


The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.


Absolute Maximum Ratings

· · · · · · · · · · · · · · · · · · ·	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	104⑤	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	74	A
I _{DM}	Pulsed Drain Current ①	360	
$P_D @T_C = 25^{\circ}C$	Power Dissipation	200	W
	Linear Derating Factor	1.3	W/°C
V _{GS}	Gate-to-Source Voltage	±16	- V
E _{AS}	Single Pulse Avalanche Energy 2	500	mJ
I _{AR}	Avalanche Current®	54	A
E _{AR}	Repetitive Avalanche Energy®	20	ոյ
dv/dt	Peak Diode Recovery dv/dt 3	5.0	V/ns
TJ	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torque, 6-32 or M3 screw.	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units
R _{ejC}	Junction-to-Case			0.75	
R _{ecs}	Case-to-Sink, Flat, Greased Surface		0.50		∘c/w
R _{eJA}	Junction-to-Ambient			62	

IRL2505

International

Electrical Characteristics @ $T_J = 25^{\circ}C$ (unless otherwise specified)

LICUIICA	$C_{II} = 25$	<u>un</u>	1033	ULIE	1 44130	s specifica)
	Parameter	Min.	Тур.	Max.	Units	
V(BR)DSS	Drain-to-Source Breakdown Voltage	55			V	$V_{GS} = 0V, I_D = 250 \mu A$
ΔV _{(BR)DSS} /ΔTJ	Breakdown Voltage Temp. Coefficient		0.035		V/°C	Reference to 25°C, I _D = 1mA
				0.008		V _{GS} = 10V, I _D = 54A ④
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.010	Ω	V _{GS} = 5.0V, I _D = 54A ④
				0.013		V _{GS} = 4.0V, I _D = 45A ④
VGS(th)	Gate Threshold Voltage	1.0		2.0	V	$V_{DS} = V_{GS}, I_D = 250 \mu A$
9 _{fs}	Forward Transconductance	59			S	$V_{DS} = 25V, I_{D} = 54A$
				25	μA	$V_{\rm DS} = 55 V, V_{\rm GS} = 0 V$
DSS	Drain-to-Source Leakage Current			250	μΛ	V _{DS} = 44V, V _{GS} = 0V, T _J = 150°C
	Gate-to-Source Forward Leakage			100		$V_{GS} = 16V$
GSS	Gate-to-Source Reverse Leakage			-100	nA	$V_{GS} = -16V$
Qg	Total Gate Charge			130		I _D = 54A
Q _{gs}	Gate-to-Source Charge			25	nC	$V_{DS} = 44V$
Q _{gd}	Gate-to-Drain ("Miller") Charge			67		V_{GS} = 5.0V, See Fig. 6 and 13 \oplus
t _{d(on)}	Turn-On Delay Time		12			$V_{DD} = 28V$
tr	Rise Time		160		ns	I _D = 54A
t _{d(off)}	Turn-Off Delay Time		43		113	R _G = 1.3Ω, V _{GS} = 5.0V
t _f	Fall Time		84			R _D = 0.50Ω, See Fig. 10 ④
	habered Durin hadreden a		4 5			Between lead,
L _D	Internal Drain Inductance		4.5		nH	6mm (0.25in.)
•						from package
Ls	Internal Source Inductance		7.5			and center of die contact
Ciss	Input Capacitance		5000			$V_{GS} = 0V$
Coss	Output Capacitance		1100		pF	$V_{DS} = 25V$
Crss	Reverse Transfer Capacitance	. <u> </u>	390			f = 1.0MHz, See Fig. 5

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current (Body Diode)			104⑤	٨	MOSFET symbol
I _{SM}	Pulsed Source Current (Body Diode) 10			360	А	integral reverse
V _{SD}	Diode Forward Voltage			1.3	V	T _J = 25°C, I _S = 54A, V _{GS} = 0V ④
t _{rr}	Reverse Recovery Time		140	210	ns	T _J = 25°C, I _F = 54A
Qrr	Reverse RecoveryCharge		650	970	nC	di/dt = 100A/µs ④
t _{on}	Forward Turn-On Time	Intr	Intrinsic turn-on time is negligible (turn-on is dominated by $L_{S}+L_{D}$)			

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ⁽²⁾ $V_{DD} = 25V$, starting $T_J = 25^{\circ}C$, $L = 240\mu \dot{H}$ $R_G = 25\Omega$, $I_{AS} = 54A$. (See Figure 12)
- 3 $I_{SD} \le 54A$, di/dt $\le 230A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_J \le 175^{\circ}C$
- ④ Pulse width \leq 300µs; duty cycle \leq 2%.
- ⑤ Caculated continuous current based on maximum allowable junction temperature;for recommended current-handling of the package refer to Design Tip # 93-4

International Rectifier

IRL2505

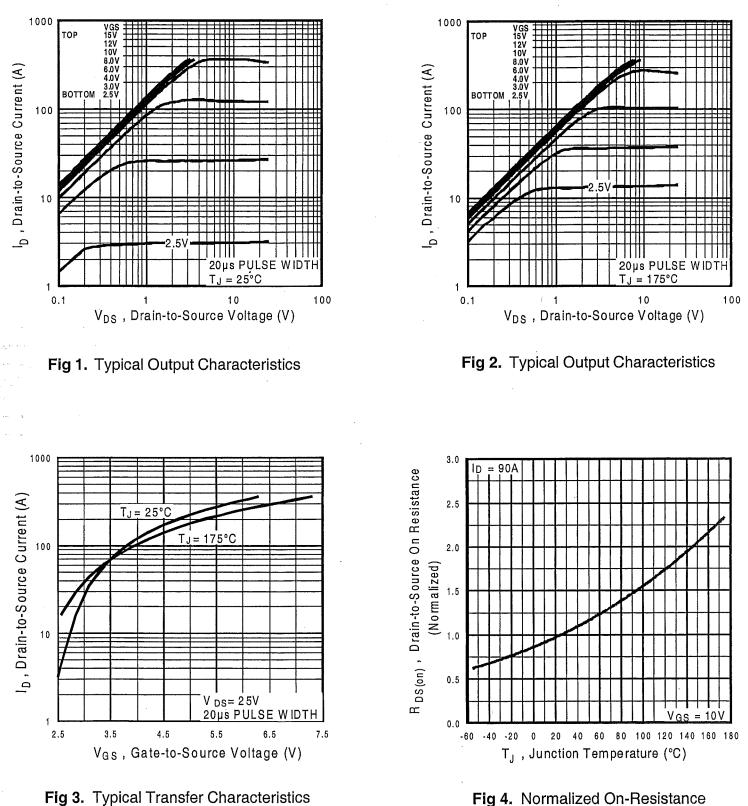


Fig 3. Typical Transfer Characteristics

Vs. Temperature

International

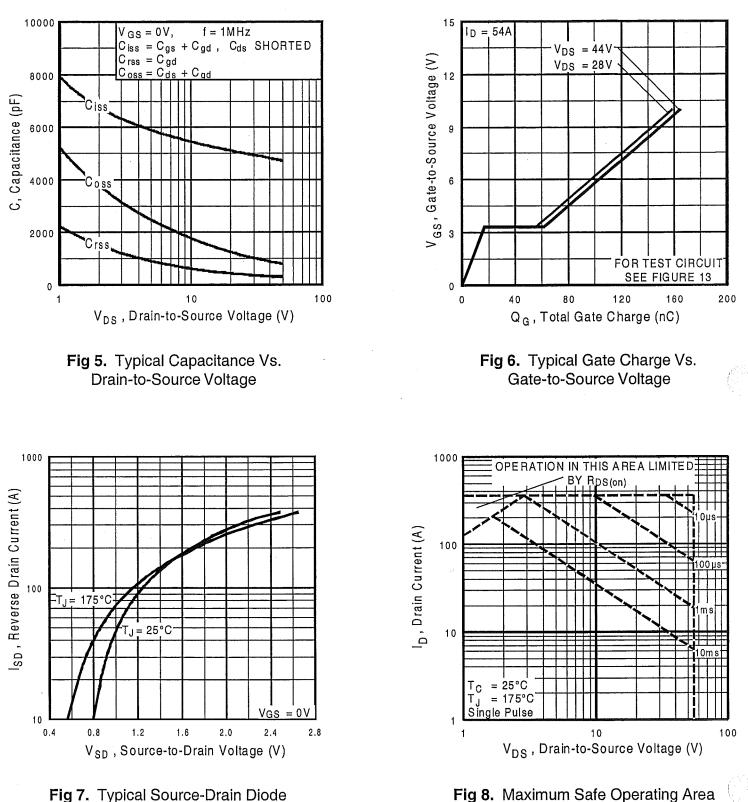
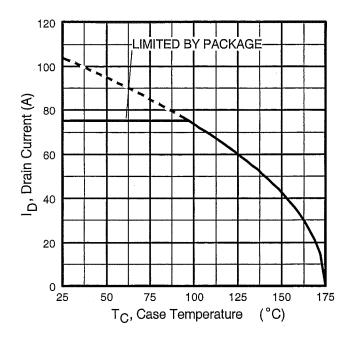
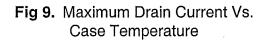




Fig 7. Typical Source-Drain Diode Forward Voltage

International

IRL2505

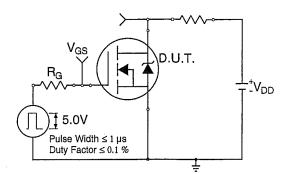


Fig 10a. Switching Time Test Circuit

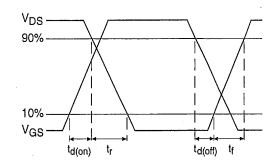
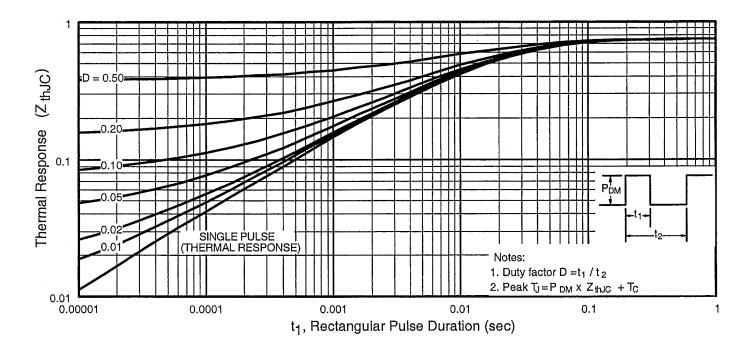



Fig 10b. Switching Time Waveforms

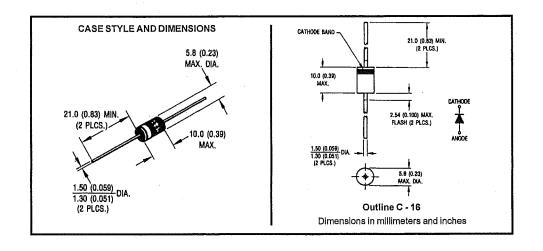
Bulletin PD-20593 04/01

International **ISR** Rectifier

SCHOTTKY RECTIFIER

Major Ratings and Characteristics

Characteristics	MBR340	Units
I _{F(AV)} Rectangular waveform	3.0	A
V _{RRM}	30/40	V
l _{FSM} @tp=5μssine	430	A
V _F @3Apk,T _J =25°C	0,6	V
Тј	-40 to 150	°C


MBR340

3.0 Amp

Description/Features

The MBR340 axial leaded Schottky rectifier has been optimized for very low forward voltage drop, with moderate leakage. Typical applications are in switching power supplies, converters, free-wheeling diodes, and reverse battery protection.

- · Low profile, axial leaded outline
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- · Very low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability

www.irf.com

MBR340

Bulletin PD-20593 04/01

International **tor** Rectifier

Voltage Ratings

Partnumber	MBR340
V _R Max. DC Reverse Voltage (V)	40
V _{RWM} Max. Working Peak Reverse Voltage (V)	ت

Absolute Maximum Ratings

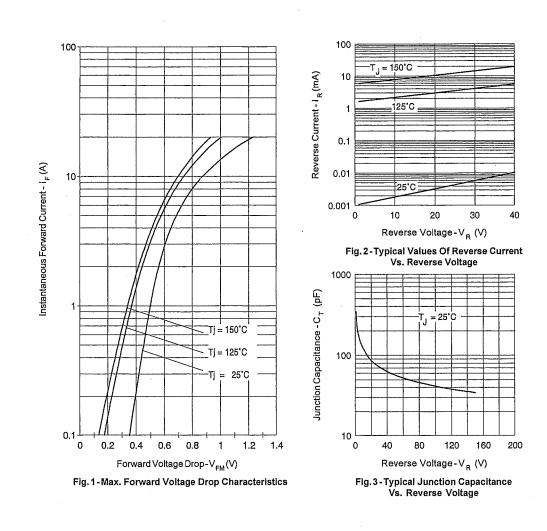
	Parameters	MBR340	Units	its Conditions	
I _{F(AV)}	Max.AverageForwardCurrent	3.0	A	50%dutycycle@T _L =92°C,rectangularwaveform	
	*SeeFig.4			With cooling fins	
I _{FSM}	Max.PeakOneCycleNon-Repetitive	430		5µs Sineor3µs Rect, pulse	Following any rated
FSM	SurgeCurrent *SeeFig.6	80	A	10ms Sine or 6ms Rect. pulse	load condition and with rated V _{RRM} applied

Electrical Specifications

	Parameters		MBR340	Units	C	Conditions
V _{FM}	Max. Forward Voltage	Drop	0.5	V	@ 1.0A	
	* See Fig. 1	(1)	0.6	V	@ 3.0A	T _J = 25 °C
			0,85	V	@ 9.4A	-
			0.37	V	@ 1.0A	
			0.49	V	@ 3.0A	T,= 125 °C
1			0.72	V	@ 9.4A	-
1 _{RM}	Max. Reverse Leakag	e Current	0.6	mA	T _J ≕ 25 °C	<u> </u>
	* See Fig. 2	(1)	8	mA	T _J = 100 °C	V _R = rated V _R
			20	mA	T _J = 125 °C	
Ст	Typical Junction Capa	citance	190	pF	$V_{R} = 5V_{DC}$ (to	est signal range 100Khz to 1Mhz) 25°C
Ls	Typical Series Inducta	ince	9.0	nH	Measured lead to lead 5mm from package body	
dv/dt	Max. Voltage Rate of	Change	10000	V/µs		
	(Rated V _R)					

(1) Pulse Width < 300µs, Duty Cycle <2%

Thermal-Mechanical Specifications


	Parameters	MBR340	Units	Conditions
T,	Max. Junction Temperature Range	-40 to 150	°C	
T _{stg}	Max.StorageTemperatureRange	-40 to 150	°C	
R _{thJL}	Typical Thermal Resistance Junction to Lead (2)	28	°C/W	DCoperation(*SeeFig.4)
wt	ApproximateWeight	1.2(0.042)	g(oz.)	
	CaseStyle	C-16		

(2) Mounted 1 inch square PCB, thermal probe connected to lead 2mm from package

www.irf.com

International **TOR** Rectifier

MBR340 Bulletin PD-20593 04/01

International **ISPR** Rectifier Bulletin PD-20593 04/01 170 2.5 Allowable Lead Temperature (°C) 150 Average Power Loss (Watts) 2 130 DC 110 1.5 RMS Limit 90 D = 0.20 D = 0.25 Square wave (D = 0.50) 80% Rated Vr applied 1 70 D = 0.33 D = 0.50 1 50 • D = 0.75 0.5 see note (2) 5DC 30 0 1 2 З 0 4 5 AverageForwardCurrent-I_{F(AV)}(A) 0 2 1 з 4 5 AverageForwardCurrent-I_{F(AV)}(A) Fig. 4 - Max. Allowable Lead Temperature Fig. 5-Forward Power Loss Characteristics Vs. Average Forward Current 1000

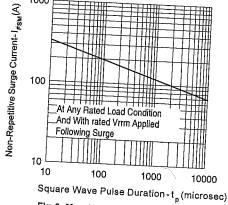


Fig. 6 - Max. Non-Repetitive Surge Current

(2) Formula used: $T_c = T_J - (Pd + Pa_{REV}^*) \times R_{h,Lc}$; $Pd = Forward Power Loss = I_{F(ARK} \times V_{FM} @ (I_{F(AV)} / D)$ (see Fig. 6); $Pd_{REV} = Inverse Power Loss = V_{RI} \times I_R (1 - D); I_R @ V_{RI} = 80\%$ rated V_R

www.irf.com

4

MBR340

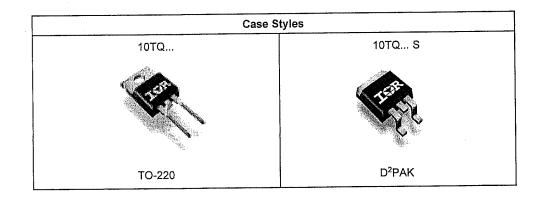
Bulletin PD-20283 01/01

International **ISR** Rectifier

SCHOTTKY RECTIFIER

6TQ... 6TQ...S

6 Amp


Major Ratings and Characteristics

Characteristics	6TQ	Units
I _{F(AV)} Rectangular waveform	6	А
V _{RRM} range	35 to 45	V
I _{FSM} @tp=5µssine	690	A
V _F @6Apk, T _J =125°C	0.53	v
T _J range	- 55 to 175	°C

Description/Features

The 6TQ Schottky rectifier series has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to 175° C junction temperature. Typical applications are in switching power supplies, converters, free-wheeling diodes, and reverse battery protection.

- 175° C T_{.1} operation
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability

www.irf.com

6TQ... Series

International **TOR** Rectifier

Bulletin PD-20283 01/01

Voltage Ratings			
Part number	6TQ035	6TQ040	6TQ045
V _R Max. DC Reverse Voltage (V)	or.	10	45
V _{RVM} Max. Working Peak Reverse Voltage (V)	35	40	45

Absolute Maximum Ratings

	Parameters	6TQ	Units	Conditions	
I _{F(AV)}	Max.AverageForwardCurrent *See Fig.5	6	A	50%dutycycle@T _c =164°C,rectangularwaveform	
IFSM	Max.PeakOneCycleNon-Repetitive	690		5µs Sineor3µs Rect. pulse	Following any rated
	SurgeCurrent*SeeFig.7	140		10ms Sine or 6ms Rect. pulse	with rated V _{RRM} applied
EAS	Non-RepetitiveAvalancheEnergy	8	mJ	T _J =25°C, I _{AS} =1.20 Amps, L=11.10 mH	
IAR	RepetitiveAvalancheCurrent	1.20	A	Currentdecayinglinearlytozeroin1µsec Frequency limited by T₁max. V₄ = 1.5 x V _R typical	
				I reducine in work of it inder a	A R Spice

Electrical Specifications

Parameters	6TQ	Units	Conditions	
Max. Forward Voltage Drop (1)	0.60	V	@ 6A	T - 05 %
* See Fig. 1	0.73	V	@ 12A	T _J = 25 °C
	0,53	V	@ 6A	T, = 125 ℃
	0.64	V	@ 12A	1 ₁ = 125 0
Max. Reverse Leakage Current (1)	0.8	mA	T _j = 25 °C	V = retod V
* See Fig. 2	7	mA	T _J = 125 °C	$V_R = rated V_R$
Threshold Voltage	0.35	V	$T_j = T_j max.$	
Forward Slope Resistance	18.23	mΩ		
Max. Junction Capacitance	400	pF	$V_{R} = 5V_{DC}$, (te	est signal range 100Khz to 1Mhz) 25 °C
Typical Series Inductance	8.0	nH	Measured lea	ad to lead 5mm from package body
Max. Voltage Rate of Change (Rated V _R)	10,000	V/ µs		
	Max. Forward Voltage Drop (1) * See Fig. 1 Max. Reverse Leakage Current (1) * See Fig. 2 Threshold Voltage Forward Slope Resistance Max. Junction Capacitance Typical Series Inductance Max. Voltage Rate of Change	Max. Forward Voltage Drop (1) 0.60 * See Fig. 1 0.73 0.53 Max. Reverse Leakage Current (1) 0.64 Max. Reverse Leakage Current (1) 0.8 * * See Fig. 2 7 Threshold Voltage 0.35 Forward Slope Resistance 18.23 Max. Junction Capacitance 400 Typical Series Inductance 8.0 Max. Voltage Rate of Change 10,000	Max. Forward Voltage Drop 11 0.60 V * See Fig. 1 0.73 V 0.53 V Max. Reverse Leakage Current (1) 0.8 mA * * See Fig. 2 7 mA Threshold Voltage 0.35 V Forward Slope Resistance 18.23 mΩ Max. Junction Capacitance 400 pF Typical Series Inductance 8.0 nH Max. Voltage Rate of Change 10,000 V/ µs	Max. Forward Voltage Drop (1) 0.60 V @ 6A * See Fig. 1 0.73 V @ 12A 0.53 V @ 6A 0.64 V @ 12A Max. Reverse Leakage Current (1) 0.8 mA T_j = 25 °C * See Fig. 2 7 mA T_j = 125 °C Threshold Voltage 0.35 V T_j = T_J max. Forward Slope Resistance 18.23 mQ Max. Junction Capacitance 400 pF V_R = 5V_{DC}, (tr Typical Series Inductance 8.0 nH Measured leat Max. Voltage Rate of Change 10,000 V/ µs V

Thermal-Mechanical Specifications

	Parameters		6TQ	Units	Conditions	
T,	Max. Junction Temperature	Range	-55 to 175	°C		
T _{stg}	Max. Storage Temperature F	Range	- 55 to 175	°C		
R _{thJC}	Max. Thermal Resistance Ju to Case	nction	2.2	°C/W	DC operation * See Fig. 4	
R _{thCS}	Typical Thermal Resistance Case to Heatsink	1	0.50	°C/W	Mounting surface, smooth and greased	
wt	ApproximateWeight		2(0.07)	g (oz.)		
Т	Mounting Torque	Min.	6 (5)	Kg-cm		
		Max.	12(10)	(Ibf-in)		

www.irf.com

ICR Rectifier Bulletin PD-20283 01/01 100 100 = 175 C 10 150 C Reverse Current - I_R (mA) 125 0 1 100 0,1 0.01 In stantaneous Forward Current - I $_{\rm F}$ (A) 0.001 0.0001 0 15 20 25 30 35 40 45 5 10 Reverse Voltage - V_R (V) 10 Fig. 2-Typical Values of Reverse Current Vs, Reverse Voltage 1000 _T_ = 175 C Junction Capacitance - C $_{ m I}$ (pF) 125 C T. 25 C J T = 25 C 100 └─ 0 ل ا 0,2 10 20 30 40 50 0,4 0.6 0.8 1 1.2 1,4 1.6 Reverse Voltage - $V_R(V)$ Forward Voltage Drop - V FM (V)

Fig. 1-Maximum Forward Voltage Drop Characteristics

0.0001

Single Pulse (Thermal Resistance

0.001

0.01

10

1

0.1

0.01

0.001

Thermal Impedance Z $_{\mbox{thJC}}$ (C/W)

www.irf.com

International

3

Fig. 3-Typical Junction Capacitance Vs. Reverse Voltage

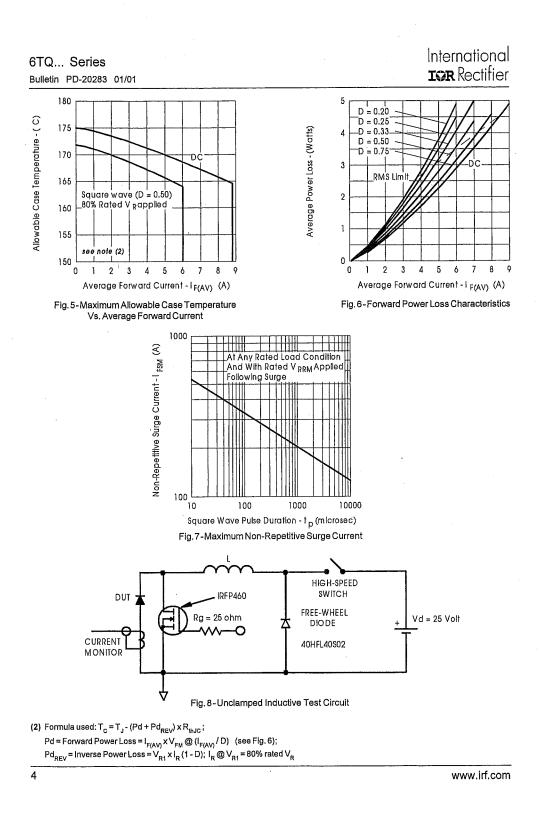
PDM

Notes:

1

0.1

t₁, Rectangular Pulse Duration (Seconds) Fig.4-Maximum Thermal Impedance $\rm Z_{thJc}$ Characteristics


1. Duty factor D = t - 2. Peak Tj = P_{DM} x Z thjc+ Tc

LUUM

10

100

6TQ... Series

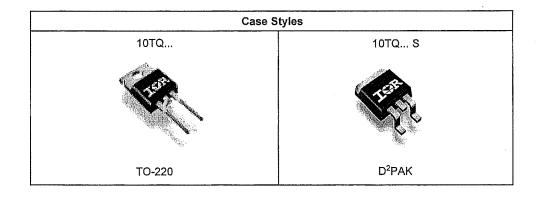
Bulletin PD-20057 01/01

International

SCHOTTKY RECTIFIER

10TQ... 10TQ...S

10 Amp


Major Ratings and Characteristics

Cha	racteristics	10TQ	Units
I _{F(AV)}	Rectangular waveform	10	A
V _{RRM}	1	35 to 45	V
I _{FSM}	@tp=5µssine	1050	A
V _F	@10Apk,T _J =125°C	0.49	V
Тј	range	- 55 to 175	°C

Description/ Features

The 10TQ.. Schottky rectifier series has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to 175° C junction temperature. Typical applications are in switching power supplies, converters, free-wheeling diodes, and reverse battery protection.

- 175° C T_J operation
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability

www.irf.com

10TQ... Series

International **IOR** Rectifier

Bulletin PD-20057 01/01

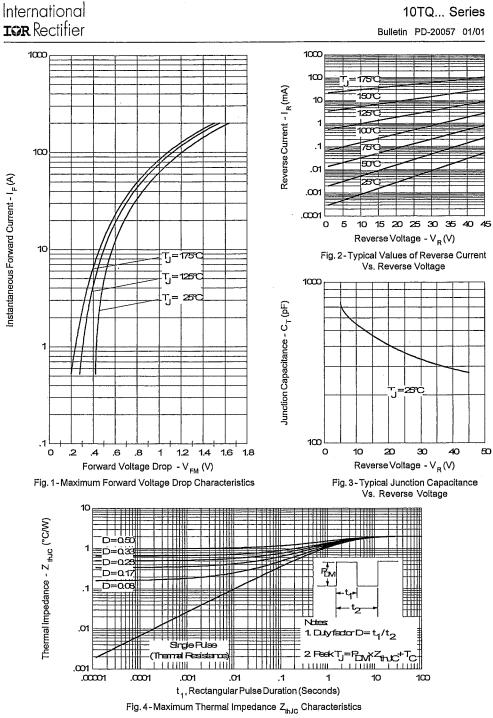
Voltage Ratings

Part number	10TQ035	10TQ040	10TQ045
V _R Max. DC Reverse Voltage (V)	0.5	10	
V _{RWM} Max. Working Peak Reverse Voltage (V)	35	40	45

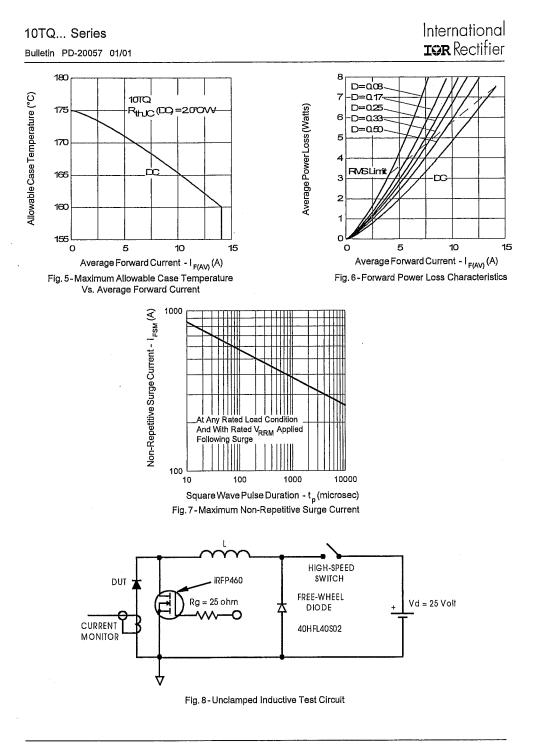
Absolute Maximum Ratings

	Parameters	10TQ	Units	Conditions	
I _{F(AV)}	Max. Average Forward Current *See Fig. 5	10	A	50% duty cycle @ T _c = 151° C, r	ectangular wave form
I _{FSM}	Max. Peak One Cycle Non-Repetitive	1050		5µs Sine or 3µs Rect, pulse	Following any rated load condition and
	Surge Current * See Fig. 7	280		10ms Sine or 6ms Rect. pulse	with rated V _{RRM} applied
EAS	Non-Repetitive Avalanche Energy	13	mJ	T _J =25°C, I _{AS} =2Amps, L=6.5	mH
I _{AR}	Repetitive Avalanche Current	2	A	Current decaying linearly to zero in 1 μ sec Frequency limited by T _J max. V _A = 1.5 x V _R typical	

Electrical Specifications


	Parameters	10TQ	Units		Conditions	
V _{FM}	Max. Forward Voltage Drop (1)	0.57	V	@ 10A	T,= 25 ℃	
	* See Fig. 1	0.67	V	@ 20A	1j-200	
		0.49	V	@ 10A	T,= 125 °C	
		0.61	V	@ 20A	(j=120 0	
I _{RM}	Max, Reverse Leakage Current (1)	2	mA	T,= 25°C	V _R = rated V _R	
	* See Fig. 2	15	mA	T _J = 125 °C		
CT	Max. Junction Capacitance	900	pF	V _B = 5V _{DC} ; (test signal range 100Khz to 1Mhz) 25 °C		
Ls	Typical Series Inductance	8.0	nH	Measured lead to lead 5mm from package body		
dv/dt	Max. Voltage Rate of Change (Rated V _R)	10,000	V/ µs			

(1) Pulse Width < 300µs, Duty Cycle < 2%


Thermal-Mechanical Specifications

	Parameters		10TQ	Units	Conditions
Tj	Max. Junction Temperate	ureRange	-55 to 175	°C	
T _{stg}	Max. Storage Temperatu	ire Range	-55 to 175	°C	
R _{thJC}	Max. Thermal Resistance to Case	e Junction	2.0	°C/W	DCoperation *See Fig. 4
R _{thCS}	Typical Thermal Resistan Heatsink	nce, Case to	0,50	°C/W	Mounting surface, smooth and greased
wt	ApproximateWeight		2(0.07)	g (oz.)	
Т	Mounting Torque	Min.	6 (5)	Kg-cm	
	Max.		12(10)	(lbf-in)	

www.irf.com

www.irf.com

www.irf.com

Bulletin PD-20178 rev. A 01/01

International **ISPR** Rectifier

SCHOTTKY RECTIFIER

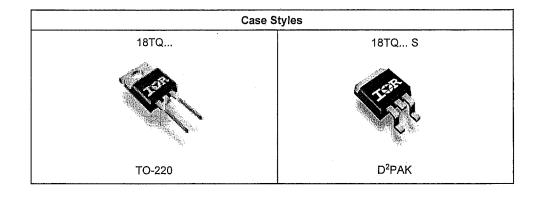
18TQ... 18TQ...S

18 Amp

1

I _{F(AV)} = 18Amp
V _R = 35 to 45V

Major Ratings and Characteristics


Characteristics	18TQ	Units
I _{F(AV)} Rectangular waveform	18	A
V _{RRM} range	35 to 45	V
l _{FSM} @tp=5µssine	1800	A
V _F @18Apk, T _J ≈125°C	0.53	v
T _J range	- 55 to 175	Ĵ

Description/Features

The 18TQ Schottky rectifier series has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to 175°C junction temperature. Typical applications are in switching power supplies, converters, free-wheeling diodes, and reverse bat-

tery protection.

- 175° C T_J operation
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability

www.irf.com

18TQ... Series

Bulletin PD-20178 rev. A 01/01

International **TOR** Rectifier

Voltage Ratings

Part number	18TQ035	18TQ040	18TQ045
V _R Max. DC Reverse Voltage (V)		40	45
V _{RWM} Max. Working Peak Reverse Voltage (V)	35	40	45

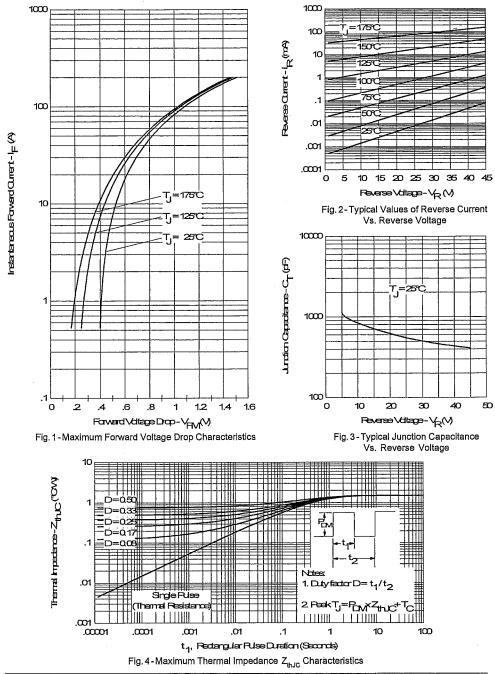
Absolute Maximum Ratings

	Parameters	18TQ	Units	Conditions	
I _{F(AV)}	Max. Average Forward Current *See Fig. 5	18	A	50% duty cycle @ T _c = 149° C, r	ectangular wave form
FSM	Max. Peak One Cycle Non-Repetitive	1800	- A	5µs Sine or 3µs Rect. pulse	Following any rated load condition and
	Surge Current * See Fig. 7	390	1 ^	10ms Sine or 6ms Rect. pulse	with rated V _{RRM} applied
EAS	Non-Repetitive Avalanche Energy	24	mJ	T _J =25°C, I _{AS} = 3.6 Amps, L= 3	3.7 mH
I _{AR}	Repetitive Avalanche Current	3.6	A	Current decaying linearly to zer Frequency limited by T _J max. V	•

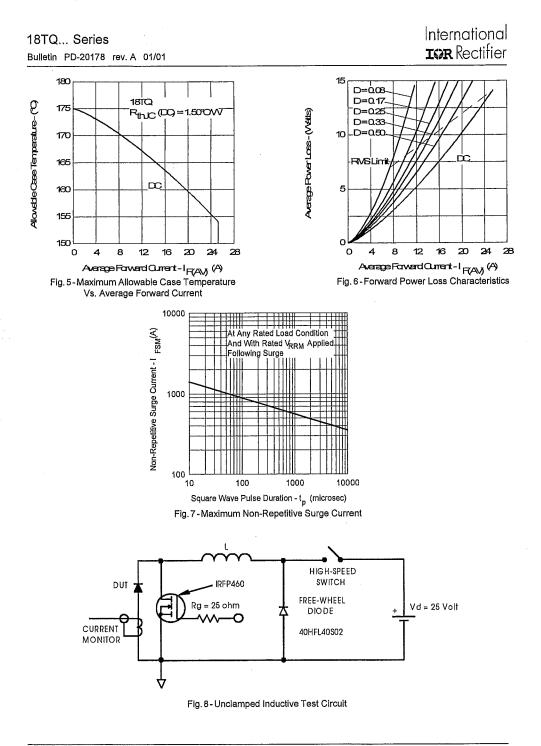
Electrical Specifications

	Parameters	18TQ	Units		Conditions
V _{FM}	Max. Forward Voltage Drop (1)	0.60	V	@ 18A	T, = 25 °C
	* See Fig. 1	0.72	V	@ 36A	1 _j = 23 0
		0.53	V	@ 18A	T ₁ = 125 °C
		0.67	V	@ 36A	1 - 120 0
l _{RM}	Max. Reverse Leakage Current (1)	2.5	mA	T_= 25 ℃	V _P = rated V _P
	* See Fig. 2	25	mA	T _J = 125 °C	R TAILOU R
C _T	Max. Junction Capacitance	1400	pF	V _R = 5V _{DC} , (test signal range 100Khz to 1Mhz) 25 °(
Ls	Typical Series Inductance	8.0	nH	Measured lead to lead 5mm from package body	
dv/dt	Max. Voltage Rate of Change (Rated V _R)	10,000	V/µs		

Thermal-Mechanical Specifications


	Parameters		18TQ	Units	Conditions
Тј	Max. Junction Temperature Range		-55 to 175	°C	
T _{stg}	Max. Storage Temperature Range		-55 to 175	°C	
R _{thJC}	Max. Thermal Resistance J to Case	unction	1.50	°C/W	DCoperation *See Fig. 4
R _{thcs}	Typical Thermal Resistance, Case to Heatsink		0.50	°C/W	Mounting surface, smooth and greased
wt	ApproximateWeight		2(0.07)	g (oz.)	
т	MountingTorque	Min.	6 (5)	Kg-cm	
		Max.	12(10)	(lbf-in)	

www.irf.com


International 1 **TOR** Rectifier Bulletin PD-20

18TQ... Series

Bulletin PD-20178 rev. A 01/01

www.irf.com

4

www.irf.com

PD-2.297 rev. A 12/97

30CPQ035

30CPQ040

30CPQ045

30 Amp

1

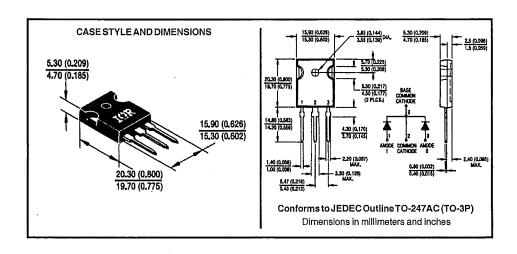
International **TGR** Rectifier

SCHOTTKY RECTIFIER

Major Ratings and Characteristics

Characteristics	30CPQ	Units	
I _{F(AV)} Rectangular waveform	30	A	
V _{RRM}	35/40/45	V	
l _{FSM} @tp=5µssine	1020	A	
V _F @15Apk,T _J =125°C (perleg)	0.50	V	
Τ _J	-55to150	°C	

Description/Features


The 300°PQ... center tap Schottky rectifier has been optimized for very low forward voltage drop, with moderate leakage. The proprietary barrier technology allows for reliable operation up to 150° C junction temperature. Typical applications are in switching power supplies, converters, free-wheeling diodes, and reverse battery protection.

150° C T_J operation

Centertap TO-247 package

 High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance

- Very low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability

www.irf.com

30CPQ035, 30CPQ040, 30CPQ045

International **TOR** Rectifier

PD-2.297 rev. A 12/97

Voltage Ratings

Part number	30CPQ035	30CPQ040	30CPQ045
V _R Max. DC Reverse Voltage (V)	35	40	45
V _{RVM} Max. Working Peak Reverse Voltage (V)	35	40	42

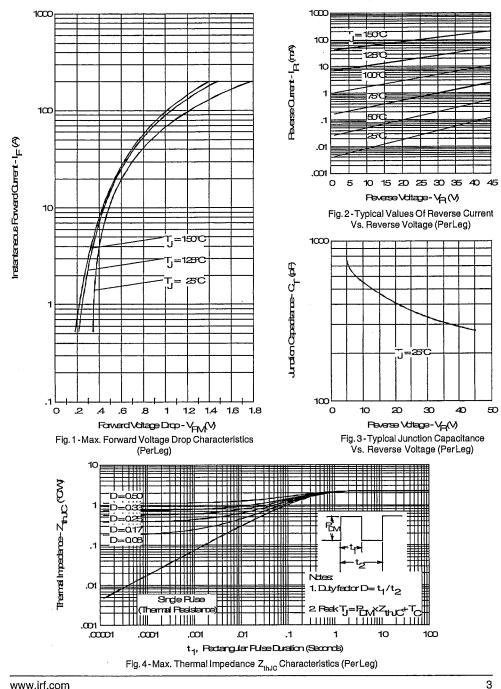
Absolute Maximum Ratings

	Parameters	30CPQ	Units	Conditions	
I _{F(AV)}	Max.AverageForwardCurrent *See Fig.5	30	A	50% duty cycle @ T _C =124°C,	rectangularwaveform
I _{FSM}	Max.PeakOneCycleNon-Repetitive	1020	A	5µs Sine or 3µs Rect. pulse	Following any rated load condition and with
	Surge Current (Per Leg) *See Fig. 7	265	1 ^	10msSine or 6msRect, pulse rated V _{RRM} applied	
EAS	Non-RepetitiveAvalancheEnergy (PerLeg)	20	mJ	T _J = 25 °C, I _{AS} = 3 Amps, L = 4.4 mH	
I _{AR}	Repetitive Avalanche Current (Per Leg)		A	Current decaying linearly to zero in 1 μ sec Frequency limited by T _J max. V _A = 1.5 x V _B typical	

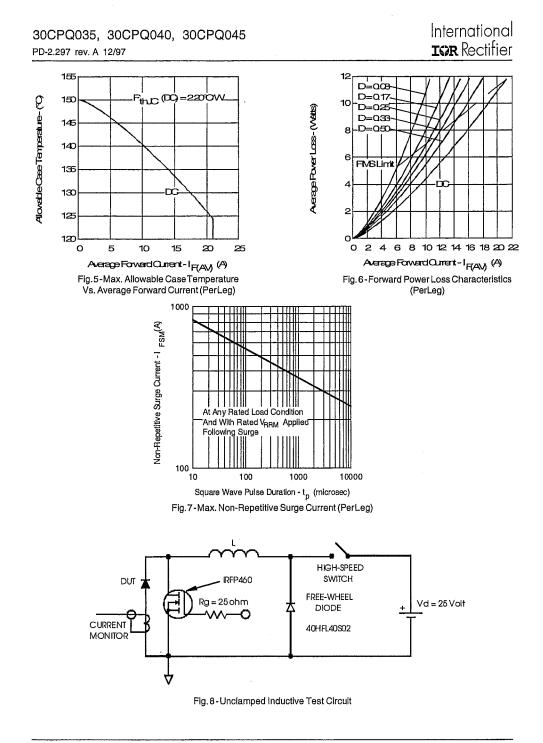
Electrical Specifications

	Parameters		30CPQ	Units	C	Conditions
V _{FM}	Max. Forward Voltage Drop		0.54	V	@ 15A	T,= 25 °C
FIVI	(Per Leg) * See Fig. 1	(1)	0.68	V	@ 30A	1,1 = 20 0
			0.50	V	@ 15A	T 105 10
			0.64	V	@ 30A	T _J = 125 °C
í _{em}	Max. Reverse Leakage Curre	ənt	1.75	mA	T _J = 25 °C	
	(Per Leg) * See Fig. 2	(1)	70	mA	T _J = 125 °C	V _R = rated V _R
C _T	Max. Junction Capacitance	(PerLeg)	900	pF	$V_{B} = 5V_{DC}$, (test signal range 100Khz to 1Mhz) 25°C	
Ls	Typical Series Inductance	(PerLeg)	7.5	nH	Measured lead to lead 5mm from package body	
dv/dt	Max. Voltage Rate of Chang (Rated V _R)	e	10,000	V/ µs		
			Į	L	I	(1) Pulse Width < 300µs, Duty Cycle <2%

Thermal-Mechanical Specifications


	Parameters		30CPQ	Units	Conditions
Т,	Max.JunctionTemperatureRange		-55 to 150	°C	
T _{stg}	Max.StorageTemperatureRange		-55to150	°C	
R _{thJC}	Max. Thermal Resistance Junction to Case (Per Leg)		2.20	°C/W	DCoperation *See Fig. 4
R _{INC}	Max.ThermalResistanceJunction toCase (Per Package)		1.10	°C∕W	DCoperation
R _{IhCS}	TypicalThermalResistance,Case toHeatsink		0.24	°C/W	Mounting surface, smooth and greased
wt	ApproximateWeight		6(0.21)	g(oz.)	
Т	MountingTorque	Min.	6(5)	Kg-cm	
		Max.	12(10)	(lbf-in)	
	CaseStyle		TO-247AC(TO-3P)	JEDEC

www.irf.com



30CPQ035, 30CPQ040, 30CPQ045

PD-2.297 rev. A 12/97

www.irf.com

www.irf.com