
Dynamic Optimization of System Performance

via Integrated Testbench

Nathan Monroe

I. INTRODUCTION

With decreasing feature size in CMOS devices, process variation is

becoming an increasing concern in device fabrication. Process variation

results in devices either being discarded as yield losses or operated

below maximum possible performance1. There is need for the ability for

a device to detect which process corner it is and accordingly calibrate its

operating conditions, enabling maximum performance in the presence

of process variations. The ring oscillator method2 uses an on-chip RO’s

frequency as a proxy for process variation. However, this is not an

effective proxy for process corner, being subject to same-die process

variations and hot-electron effects. In addition, it incurs significant area

and power costs. The Razor method attempts to solve this with a

shadow register to detect a circuit’s faulty operation, allowing

optimized DVS3. However metastability, noise susceptibility, hold

violations, increased power consumption are concerns, along with

implementation cost due to a precisely delayed clock (source).

Proposed here are two implementations of an integrated testbench for a

system to self-assess critical path functionality independent of process

variations, allowing a system to optimize operation parameters such as

VDD, Fclk, or backgate bias. The two proposals are implemented for

demonstration in 45nm CMOS in a 16b ripple carry adder, used in a

DVS implementation at Fclk=200MHz.

II. LOOKUP TABLE METHOD

In the LUT method, upon startup a worst-case input vector is applied to

a critical logic path- both predetermined by design and hardcoded into

the logic (see fig. 1). The slowest output bit is compared to the expected

output (based on WC input, predetermined by design and hardcoded). It

is assumed that successful computation of the slowest output bit implies

successful computation of all other output bits. If comparison is

successful at the end of the clock cycle, then VDD is lowered by a fixed

amount dv. If comparison fails, then VDD is raised by a fixed amount

dv. This process is repeated iteratively until minimum VDD for

functional operation is found, given Fclk and other system parameters.

This will converge successfully independent of process variation. This

method was implemented in SPICE using behavioral vdd sources (ideal

voltage step). As seen in fig. 2, VDD converges to optimal value in the

presence of process variations in this ten run Monte Carlo simulation.

Selection of dv is a tradeoff between convergence time and granularity

of optimal vdd. This has minimal area overhead- n muxes plus

comparison logic. The inclusion of comparison logic slightly increases

Tp of critical path logic due to increased capacitive loading on slowest

bit. In addition, finite delay of comparison logic provides a small

amount of margin from being on the absolute edge of functionality.

Area cost of LUT implementation consists of a single xor gate, n muxes

to input worst-case vector, scaling with n bits. Complexity also slightly

increases in implementation of power supply control circuitry.

III. PID CONTROL METHOD

A PID control method improves upon the lookup table’s convergence

time and granularity. This is of particular utility in DVS

implementations, where low bandwidth of power supplies can result in

long convergence times for optimal vdd. In repeating arithmetic

structures which are common critical paths, successive output bits have

equal delays and thus observation of these signals can be used to track

propagation of the critical path and determine negative timing margin.

As seen in fig. 4, delay lines are added, driven by the last output bit. The

delay lines are implemented as buffers, designed with delay equal to

successive output bits in the critical path logic. Observation of delayed

output bits provides information on positive timing margin. Information

on positive/negative timing margin is used in a PID control, to quickly

converge on minimum VDD for functional operation. For example,

consider CLK_A (fig. 3). The next cycle begins before successful

computation of S[13] and S[15], indicating that a significant increase in

vdd is required to meet timing constraints. Conversely, CLK_C arrives

after successful output computation plus 2 delayed versions of S[15],

indicating significant positive timing margin and that vdd can be

significantly lowered to save power while maintaining timing

constraints given Fclk. CLK_B arrives at the optimal time, where the

critical computation has been completed with little timing margin and

therefore vdd is at it’s optimal value given process variations, worst

case-input and logic path, and desired Fclk.

In addition to improved convergence time, PID control can achieve

finer granularity on VDD with minimal convergence time. In this

implementation, negative margin is determined from output bits

s[9,11,13,15], and four delay lines are used to determine positive

margin, each delay line designed to have Tp equal to two successive

output bits. This method was implemented in SPICE using behavioral

vdd sources (ideal voltage step). As seen in fig. 5, VDD converges to

optimal value rapidly in the presence of process variations in this ten

run Monte Carlo simulation.

In general, this PID approach has increased area cost and critical path

loading, in exchange for improved convergence time. There is a design

tradeoff- adding comparison logic to more output bits of critical path

increases granularity of the feedback loop, improving convergence time

at the cost of added area and capacitive loading on critical path outputs.

On the input side, area cost scales with n muxes, one per input bit. On

the output side, area cost consists of one xor gate and delay-sized buffer

per PID loop input, with increasing PID inputs improving convergence

time to optimal value.

IV. CONCLUSION

Two integrated testbenches have been proposed for a system to

optimize performance in the presence of process variations. The LUT

method provides information solely if a critical path is meeting timing

requirements. This comes at an area cost similar to the Razor method,

while eliminating the need for a delayed clock. The PID control method

provides a measure of by how much timing requirements are/are not

being met, enabling a controller to improve convergence time and

granularity at the expense of increased area cost and loading of critical

path compared to the Razor method. Both methods are of utility in

systems with one or few critical paths. The PID method is of extra

utility in the case of DVS optimization, where VDD convergence time

dominates. Both methods have been demonstrated in a DVS

optimization, but could be easily modified for optimization of Fclk,

backgate bias, or other parameters for desired device performance. The

testbenches have been demonstrated for optimization at startup,

however the implementation could be extended for dynamic

optimization while changing operation modes during system operation.

This allows devices to be pushed to maximum performance and

minimize conservative engineering design margins in the presence of

process variation.

Acknowledgements:

The author gratefully acknowledges Prof V. Sze and A. Suleiman for helpful

discussion. The author also acknowledges the Dr. Pepper Company for

supplying the necessary caffeine to enable this work.

References:

1. Chandrakasan et al. “Digital Integrated Circuits: A Design Perspective”.

Prentice Hall, 2003.

2. Das et al. Within-die gate delay variability measurement using

re-configurable ring oscillator”. IEEE Semi. Man. pp. 256-267, 2009.

3. Ernst et al. “Razor: Circuit-Level Correction of Timing Errors for

Low-Power Operation”. Micro. IEEE pp.10-20, 2004.

Figure 1: System block diagram: Lookup Table Method

Figure 2: LUT Control Method Monte Carlo DVS convergence

Figure 4: System block diagram: PID Control Method

Figure 5: PID Control Method Monte Carlo DVS convergence

 Figure 3: Example timing for PID Control Method

