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I. INTRODUCTION 

With decreasing feature size in CMOS devices, process variation is 

becoming an increasing concern in device fabrication. Process variation 

results in devices either being discarded as yield losses or operated 

below maximum possible performance1. There is need for the ability for 

a device to detect which process corner it is and accordingly calibrate its 

operating conditions, enabling maximum performance in the presence 

of process variations. The ring oscillator method2 uses an on-chip RO’s 

frequency as a proxy for process variation. However, this is not an 

effective proxy for process corner, being subject to same-die process 

variations and hot-electron effects. In addition, it incurs significant area 

and power costs. The Razor method attempts to solve this with a 

shadow register to detect a circuit’s faulty operation, allowing 

optimized DVS3. However metastability, noise susceptibility, hold 

violations, increased power consumption are concerns, along with 

implementation cost due to a precisely delayed clock (source). 

Proposed here are two implementations of an integrated testbench for a 

system to self-assess critical path functionality independent of process 

variations, allowing a system to optimize operation parameters such as 

VDD, Fclk, or backgate bias. The two proposals are implemented for 

demonstration in 45nm CMOS in a 16b ripple carry adder, used in a 

DVS implementation at Fclk=200MHz. 

 

II. LOOKUP TABLE METHOD 

In the LUT method, upon startup a worst-case input vector is applied to 

a critical logic path- both predetermined by design and hardcoded into 

the logic (see fig. 1). The slowest output bit is compared to the expected 

output (based on WC input, predetermined by design and hardcoded). It 

is assumed that successful computation of the slowest output bit implies 

successful computation of all other output bits. If comparison is 

successful at the end of the clock cycle, then VDD is lowered by a fixed 

amount dv. If comparison fails, then VDD is raised by a fixed amount 

dv. This process is repeated iteratively until minimum VDD for 

functional operation is found, given Fclk and other system parameters. 

This will converge successfully independent of process variation. This 

method was implemented in SPICE using behavioral vdd sources (ideal 

voltage step). As seen in fig. 2, VDD converges to optimal value in the 

presence of process variations in this ten run Monte Carlo simulation. 

Selection of dv is a tradeoff between convergence time and granularity 

of optimal vdd. This has minimal area overhead- n muxes plus 

comparison logic. The inclusion of comparison logic slightly increases 

Tp of critical path logic due to increased capacitive loading on slowest 

bit. In addition, finite delay of comparison logic provides a small 

amount of margin from being on the absolute edge of functionality. 

Area cost of LUT implementation consists of a single xor gate, n muxes 

to input worst-case vector, scaling with n bits. Complexity also slightly 

increases in implementation of power supply control circuitry. 

 

III. PID CONTROL METHOD 

A PID control method improves upon the lookup table’s convergence 

time and granularity. This is of particular utility in DVS 

implementations, where low bandwidth of power supplies can result in 

long convergence times for optimal vdd. In repeating arithmetic 

structures which are common critical paths, successive output bits have 

equal delays and thus observation of these signals can be used to track 

propagation of the critical path and determine negative timing margin. 

As seen in fig. 4, delay lines are added, driven by the last output bit. The 

delay lines are implemented as buffers, designed with delay equal to 

successive output bits in the critical path logic. Observation of delayed 

output bits provides information on positive timing margin. Information 

on positive/negative timing margin is used in a PID control, to quickly 

converge on minimum VDD for functional operation. For example, 

consider CLK_A (fig. 3). The next cycle begins before successful 

computation of S[13] and S[15], indicating that a significant increase in 

vdd is required to meet timing constraints. Conversely, CLK_C arrives 

after successful output computation plus 2 delayed versions of S[15], 

indicating significant positive timing margin and that vdd can be 

significantly lowered to save power while maintaining timing 

constraints given Fclk. CLK_B arrives at the optimal time, where the 

critical computation has been completed with little timing margin and 

therefore vdd is at it’s optimal value given process variations, worst 

case-input and logic path, and desired Fclk.  

In addition to improved convergence time, PID control can achieve 

finer granularity on VDD with minimal convergence time. In this 

implementation, negative margin is determined from output bits 

s[9,11,13,15], and four delay lines are used to determine positive 

margin, each delay line designed to have Tp equal to two successive 

output bits. This method was implemented in SPICE using behavioral 

vdd sources (ideal voltage step). As seen in fig. 5, VDD converges to 

optimal value rapidly in the presence of process variations in this ten 

run Monte Carlo simulation.  

In general, this PID approach has increased area cost and critical path 

loading, in exchange for improved convergence time. There is a design 

tradeoff- adding comparison logic to more output bits of critical path 

increases granularity of the feedback loop, improving convergence time 

at the cost of added area and capacitive loading on critical path outputs. 

On the input side, area cost scales with n muxes, one per input bit. On 

the output side, area cost consists of one xor gate and delay-sized buffer 

per PID loop input, with increasing PID inputs improving convergence 

time to optimal value. 

 

IV. CONCLUSION 

Two integrated testbenches have been proposed for a system to 

optimize performance in the presence of process variations. The LUT 

method provides information solely if a critical path is meeting timing 

requirements. This comes at an area cost similar to the Razor method, 

while eliminating the need for a delayed clock. The PID control method 

provides a measure of by how much timing requirements are/are not 

being met, enabling a controller to improve convergence time and 

granularity at the expense of increased area cost and loading of critical 

path compared to the Razor method. Both methods are of utility in 

systems with one or few critical paths. The PID method is of extra 

utility in the case of DVS optimization, where VDD convergence time 

dominates. Both methods have been demonstrated in a DVS 

optimization, but could be easily modified for optimization of Fclk, 

backgate bias, or other parameters for desired device performance. The 

testbenches have been demonstrated for optimization at startup, 

however the implementation could be extended for dynamic 

optimization while changing operation modes during system operation. 

This allows devices to be pushed to maximum performance and 

minimize conservative engineering design margins in the presence of 

process variation. 
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Figure 1: System block diagram: Lookup Table Method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: LUT Control Method Monte Carlo DVS convergence 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: System block diagram: PID Control Method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: PID Control Method Monte Carlo DVS convergence 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

  Figure 3: Example timing for PID Control Method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


